Answer:
1.
Jupiter is the largest planet in the solar system. (Image credit: NASA)
The largest planet in the solar system, the gas giant Jupiter is approximately 318 times as massive as Earth. If the mass of all of the other planets in the solar system were combined into one "super planet," Jupiter would still be two and a half times as large.
2.Rotation of Jupiter
[/caption]
Jupiter has the fastest rotation of all the planets in the Solar System, completing one rotation on its axis every 9.9 hours.
3.Jupiter, the King of the Planets, is a gas giant, which means that it's made mostly of gases like hydrogen and helium, and that it doesn't have a solid surface in the way that rocky planets like Earth do. With a temperature of 130 K (-140 C, -230 F), it's so cold that it gives off most of its energy in the infrared. In fact, Jupiter gives off almost twice as much heat as it receives from the Sun. It's able to do this because it has its own internal heat source, powered by the slow gravitational collapse that started when the planet first formed. Astronomers estimate that Jupiter is currently shrinking by almost 2 cm per year
Explanation:
Given that,
A ball is tossed straight up with an initial speed of 30 m/s
We need to find the height it will go and the time it takes in the air.
At its maximum height, its final speed, v = 0 and it will move under the action of gravity. Using equation of motion :
v = u +at
Here, a = -g
v = u -gt
i.e. u = gt
So, the time for upward motion is 3.06 seconds. It means that it will in air for 3.06×2 = 6.12 seconds
Let d is the maximum distance covered by it.
Putting all values
Hence, it will go to a height of 45.91 m and it will in the air for 6.12 seconds.
Answer:
3.6 seconds
Explanation:
Given:
y₀ = y = 0 m
v₀ = 31 sin 35° m/s
a = -9.8 m/s²
Find: t
y = y₀ + v₀ t + ½ at²
0 = 0 + (31 sin 35°) t + ½ (-9.8 m/s²) t²
0 = 17.78t − 4.9t²
0 = t (17.78 − 4.9t)
t = 0 or 3.63
Rounded to the nearest tenth, the ball lands after 3.6 seconds.
Answer:
α = 0.0135 rad/s²
Explanation:
given,
t = 133 min = 133 x 60 = 7980 s
angular speed varies from 570 rpm to 1600 rpm
now,
570 rpm =
= 59.69 rad/s
1600 rpm = =
= 167.6 rad/s
using equation of rotational motion
ωf = ωi + αt
167.6 = 59.7 + α x 7980
α x 7980 = 107.9
α = 0.0135 rad/s²
Answer:
80m, assuming g=10m/s^2
Explanation:
40m/s will be reduced to 0m/s in 4 seconds. 4 seconds x 40m/s would be 160m up, but you will only get half of that because you decelerate linearly to 0m/s. This leaves you with 4 x 20 = 80m.