1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Veseljchak [2.6K]
3 years ago
15

Light from the sun heats Earth's atmosphere. When the air becomes warmer, it expands. Which type of energy increases to cause th

is expansion?
A. chemical
B. electrical
C. kinetic
D. pontential

Physics
2 answers:
lilavasa [31]3 years ago
7 0
C. kinetic is correct. Light from the sun heats Earth's atmosphere. When the air becomes warmer, it expands. Kinetic energy it increases to cause this expansion. Picture shows to kinetic energy:

Hope it helped you, and have a great day.

-Charlie

VashaNatasha [74]3 years ago
5 0
I think that the answer is C.Kinetic
You might be interested in
A 1.0 ball moving at 2.0 / perpendicular to a wall rebounds from the wall at 1.5 /. If the ball was in contact with the wall for
xxTIMURxx [149]

Answer:

5N

Explanation:

We have a simple problem of momentum here.

ΔMomentum= mΔv= FΔt

Solve for F

mΔv/Δt=F

Plug in givens

1*(2-1.5)/0.1=F

F=5N

4 0
2 years ago
A 1.2 x10 3 kilogram automobile in motion strikes a 1.0 x 10 -4 kilogram insect as a result the insect is accelerated at a rate
Mariana [72]
According to Newton's second law, the force applied to an object is equal to the product between the mass of the object and its acceleration:
F=ma
where F is the magnitude of the force, m is the mass of the object and a its acceleration.

In this problem, the object is the insect, with mass m=1.0 \cdot 10^{-4} kg. The acceleration of the insect is a=1.0 \cdot 10^2 m/s^2, therefore we can calculate the force exerted by the car on the insect:
F=ma=(1.0 \cdot 10^{-4} kg)(1.0 \cdot 10^2 m/s^2)=0.01 N

How do we find the force exerted by the insect on the car?
According to Newton's third law (known as action-reaction law), when an object A exerts a force on an object B, object B also exerts a force equal and opposite on object A. Therefore, the force exerted by the insect on the car is equal to the force exerted by the car on the object, so it is 0.01 N.
6 0
3 years ago
Through the process of blank
maksim [4K]

Answer:

Subduction, Trench, Mantle

Explanation:

8 0
2 years ago
Read 2 more answers
The slider of mass m is released from rest in position A and slides without friction along the vertical-plane guide shown. Deter
Anuta_ua [19.1K]

The value of normal force as the slider passes point B is

  • 6 mg

The value of h when the normal force is zero

  • 3R/2

<h3>How to solve for the normal force</h3>

The normal force is calculated using the work energy principle which is applied as below

K₁ + U₁ = K₂

k represents kinetic energy

U represents potential energy

the subscripts 1,2 , and 3 = a, b, and c

for 1 to 2

K₁ + W₁ = K₂

0 + mg(h + R) = 0.5mv²₂

g(h + R) = 0.5v²₂

v²₂ = 2g(1.5R + R)

v²₂ = 2g(2.5R)

v²₂ = 5gR

Using summation of forces at B

Normal force, N  = ma + mg

N = m(a + g)

N = m(v²₂/R + g)

N = m(5gR/R + g)

N = 6mg

for 1 to 3

K₁ + W₁ = K₃ + W₃

0 + mgh = 0.5mv²₃ + mgR

gh = 0.5v²₃ + gR

0.5v²₃ = gh - gR

v²₃ = 2g(h - R)

at C

for normal force to be zero

ma = mg

v²₃/R = g

v²₃ = gR

and v²₃ = 2g(h - R)

gR = 2gh - 2gR

gR + 2gR = 2gh

3gR = 2gh

3R/2 = h

Learn more about normal force at:

brainly.com/question/20432136

#SPJ1

8 0
10 months ago
cylindrical container is to be constructed to be open at the top with a volume of 27π cubic meters using the least amount of mat
Llana [10]

Answer:

radius comes out to be 3 m

height of the cylinder comes out to be 3m

Explanation:

given

volume of cylinder = 27π m³

π r² h = 27π

   r² h = 27.............(1)

surface area of cylinder open at the top

S = 2πrh + π r²

S = 2\pi \dfrac{27}{r} + \pi r^2

\frac{\mathrm{d} s}{\mathrm{d} r}=\frac{\mathrm{d}}{\mathrm{d} r} (2\pi \dfrac{27}{r} + \pi r^2)

\frac{\mathrm{d} s}{\mathrm{d} r}=54\pi \dfrac{-1}{r^2}+2\pi r

\frac{\mathrm{d} s}{\mathrm{d} r}=0

for least amount of material requirement.

\dfrac{54\pi }{r^2} = 2\pi r\\r=3m

hence radius comes out to be 3 m

for height put the value in the equation 1

so, height of the cylinder comes out to be 3m

3 0
3 years ago
Read 2 more answers
Other questions:
  • Consider a particle with initial velocity v⃗ that has magnitude 12.0 m/s and is directed 60.0 degrees above the negative x axis.
    5·1 answer
  • At what point on the track does a roller coaster have the greates kinetic energy?
    12·1 answer
  • By how much does the earth-Sun distance change? 300,000 miles 500,000 miles 3,000,000 miles 3,500 miles
    12·1 answer
  • A 20.0 μF capacitor initially charged to 30.0 μC is discharged through a 1.20 kΩ resistor. How long does it take to reduce the c
    13·1 answer
  • A boy is inning with a kinetic energy of 810j. If the boy has a mass of 80kg. What is his speed ?
    5·1 answer
  • If the length of a ramp is increased, what will happen to the input force?
    10·1 answer
  • A ball is tossed straight up from the surface of a small, sphericalasteroid with no atmosphere. The aball rises to a height equa
    10·1 answer
  • A person next to a fireplace feels warm. How is the heat transferred to them?
    13·1 answer
  • A sledgehammer hits a wall. How do the hammer and the wall act on each other? (1 point)
    12·1 answer
  • Calculate the volume at STP of the following compounds:<br> 0,01 mol of hydrogen chloride gas.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!