Answer:
-1.82 °C
Explanation:
Step 1: Given data
- Mass of NaCl (solute): 33.9 g
- Mass of water (solvent): 578 g = 0.578 kg
- Freezing point depression constant for water (Kb): -1.82 °C/m
Step 2: Calculate the molality of the solution
We will use the following expression.
m = mass of solute / molar mass of solute × kg of solvent
m = 33.9 g / 58.44 g/mol × 0.578 kg
m = 1.00 m
Step 3: Calculate the freezing point depression (ΔT)
The freezing point depression is a colligative property that, for a non-dissociated solute, can be calculated using the following expression:
ΔT = Kb × m
ΔT = -1.82 °C/m × 1.00 m
ΔT = -1.82 °C
The mass of the blood is 5.8 kg.
<em>V</em> = 5.5 L = 5500 mL
Mass = 5500 mL × (1.06 g/1 mL) = 5800 g = 5.8 kg
Answer:
D) Vernal and autumnal equinoxes.
I think its, A because its below the lithosphere and the lithosphere it between the crust and mantel. no liquids there.
Answer: Elements are arranged from left to right and top to bottom in order of increasing atomic number.
Explanation: Order generally coincides with increasing atomic mass.