Before getting an answer for it first we have to understand nuclear fusion.
Nuclear fusion is a thermo-nuclear reaction in which two light unstable nuclei will form a heavy stable nuclei. In this process there will be some mass defect which will be converted into energy as per Einstein's mass energy equivalence theorem.
The theorem is stated as
where c is the velocity of light and m is the mass converted into energy.
One take an example of fusion in sun where 4 hydrogen atoms combine to form a helium nucleus which are explained below-



-----------------------------------------------------------------------
Here
is the positron.
In this process very high temperature is needed which is approximately equal to the temperature of the sun i.e 
Such temperature is very difficult to initiate the reaction on the earth surface. It should be carried out in an sustainable way also .Otherwise It will cause nuclear hazards.
The value of g at sea level is 9.81 ms^-2.
The boy's mass is constant wherever he is in the universe but his weight will depend on the strength gravity where he is.
By proportion its value on the mountain peak is (360 /400) * 9.81
= 0.9 * 9.81 = 8.83 ms^-2 to nearest hundredth, (answer).
By Newton's second law, the net vertical force acting on the object is 0, so that
<em>n</em> - <em>w</em> = 0
where <em>n</em> = magnitude of the normal force of the surface pushing up on the object, and <em>w</em> = weight of the object. Hence <em>n</em> = <em>w</em> = <em>mg</em> = 196 N, where <em>m</em> = 20 kg and <em>g</em> = 9.80 m/s².
The force of static friction exerts up to 80 N on the object, since that's the minimum required force needed to get it moving, which means the coefficient of <u>static</u> friction <em>µ</em> is such that
80 N = <em>µ</em> (196 N) → <em>µ</em> = (80 N)/(196 N) ≈ 0.408
Moving at constant speed, there is a kinetic friction force of 40 N opposing the object's motion, so that the coefficient of <u>kinetic</u> friction <em>ν</em> is
40 N = <em>ν</em> (196 N) → <em>ν</em> = (40 N)/(196 N) ≈ 0.204
And so the closest answer is C.
(Note: <em>µ</em> and <em>ν</em> are the Greek letters mu and nu)
Temperature. The other three dont have anything to do with determining climate