when object goes under acceleration
c).its velocity always increases
<h3><u>Additional</u><u> </u><u>information</u><u>:</u><u>-</u></h3>
★ Acceleration: Rate of increase in velocity.
★ Velocity: Distance travelled by a body per unit time in given direction is called velocity .
Answer: sheet of charge
Explanation:
a )
Since the charge is negative , potential will be negative near it . At a far point potential will be less negative. So potential will virtually increase on going away from the sheet . At infinity it will become almost zero. Electric field will be towards the plate , so potential will decrease towards the plate.
b ) The shape of equi -potential surface will be plane parallel to the sheet of charge because electric field will be perpendicular to the sheet of charge and almost uniform near the sheet of charge. The equi- potential surface is always perpendicular to electric field.
C ) Electric field which is almost uniform near the sheet of charge is equal t the following
E = σ / ε₀ where σ is charge density of surface and ε₀ is permittivity of medium whose value is 8.85 x 10⁻¹²
E = 3 x 10⁻⁹ / 8.85 x 10⁻¹²
= .3389 x 10³
= 338.9 V / m
spacing between 1 V
= 1 / 338.9 m
= 2.95 X 10⁻3 m
= 2.95 mm.
The resistance of the lamp plugged in to a standard wall outlet with a current of 0.5 amps is 240 Ω (ohms)
Explanation:
In the United States Of America the standard voltage is 120 v and their frequency is 60 Hz
Standard wall outlet voltage is 120 V
The current in the lamp is 0.5 ampere
Resistance (R) = V/ I
= 120/0.5
= 240Ω (ohms)
Thus the resistance of the lamp plugged in to a standard wall outlet with a current of 0.5 amps is 240 Ω (ohms).
Answer:
D
Explanation:
First we define our variables
V0=29.4
a=-9.8
V=0
We have to find the maximum displacement , which I will define as X
We use formula v^2=v0^2+2aX
All we do is substitute our values
0=29.4^2-19.6X
29.4^2=19.6X
X=29.4^2/19.6=44.1