Answer:
This is false
Explanation:
This is why the answer to this question is false. If these types of objects (2 points connected) should pass through same sets of 3 points, irrespective of the order that each object was plotted, we will not get identical shapes created.
The shape that is going to be created will be dependent on the pattern/order that was involved in the plotting. If it was identical, then we will have identical shapes. But if the order during plotting is different then we will have different shapes created.
Thank you!
For an uniformly accelerated motion, we can write

where

is the acceleration of this motion, which in this problem is the gravitational acceleration, with a negative sign because it points downward, against the direction of the motion; h=0.540 m is the distance covered by the flea, and

is the initial velocity.
At the maximum height, the velocity is zero, so

. Therefore we can solve to find

:
Answer:
Hipparchus was an ancient Greek who classified stars based on the brightness in 129 B.C. He grouped the brightest stars and ranked them 1 (first magnitude) and dimmest stars as 6 (sixth magnitude). Thus, the smaller numbers indicated brighter stars. Now, the scale extends in negative axis as well. More the negative number, brighter is the star. For example, Sun has magnitude -26.74.
This the apparent magnitude which means the classification is based on the brightness of the star as it appears from the Earth.
Answer:
superscript
Explanation:
When looking at the chemical symbol, the charge of the ion is displayed as the Superscript. This is because the charge of ions is usually written up on the chemical symbol while the atom/molecule is usually written down the chemical symbol. The superscript refers to what is written up on the formula while the subscript is written down on the formula.
An example is H2O . The 2 present represents two molecule of oxygen and its written as the subscript while Fe2+ in which the 2+ is written up is known as the superscript.
This next statement is a big deal. It should be up on a board, surrounded
by flashing red and yellow lights, and hung on the wall of every Science
classroom. Although we never see it in our daily lives, it's fundamental to
the workings of the universe, and it's also Newton's first law of motion:
<em>Without friction, it doesn't take <u>ANY</u> force to keep a moving object
moving. </em><em>Force is only required to <u>change</u> the object's speed, or to
<u>change</u> the direction </em><em>in which it's moving.</em>
The answer to the question is: On a level road, and neglecting any friction,
the engine doesn't have to supply ANY force to keep the car going at the
same speed.