11/100, easy. Unless you want something more complicated?
Step-by-step explanation:
The statement in the above question is True.
Sum of three prime numbers (other than two) is always odd.
Going by Christian Goldbach number theory ,
- Goldbach stated that every odd whole number greater than 5 can be written as sum of three prime numbers .
Lets take an example,
- 3 + 3 + 5 = 11
- 3 + 5 + 5 = 13
- 5 + 5 + 7 = 17
Later on in 2013 the Mathematician <u>Harald Helfgott</u> proved this theory true for all odd numbers greater than five.
Answer:
Step-by-step explanation:
You can split the coins into 3 groups, each of them has 3 coins. Weigh group 1 vs group 2, if one is lighter, that group has the fake coin. If both groups weigh the same, then group 3 has the fake coin.
Continue to split the group that has the fake coin into 3 groups, each group has 1 coin. Now apply the same procedure and we can identify the fake coin.
Total of scale usage is 2
b) if you have
coins then you can apply the same approach and find the fake coin with just n steps. By splitting up to 3 groups each step, after each step you should be able to narrow down your suspected coin by 3 times.
Step 1: you narrow down to group of
coins
Step 2: you narrow down to group of
coins
Step 3: you narrow down to group of
coins
...
Step n: Step 1: you narrow down to group of
coin
Answer:
5
Step-by-step explanation:
f(-4)= -2(-4)-3
=8-3
=5
Answer:
20??? wow I feel stupid I forgot how to do everything