Answer is: 0.102 moles of HCl would react.
Balanced chemical reaction:
2HCl(aq) + Sr(OH)₂ → SrCl₂(aq) + 2H₂O(l).
V(Sr(OH)₂) = 37.1 mL ÷ 1000 mL/L.
V(Sr(OH)₂) = 0.0371 L; volume of the strontium hydroxide solution.
c(Sr(OH)₂) = 0.138 M; molarity of the strontium hydroxide solution.
n(Sr(OH)₂) = c(Sr(OH)₂) · V(Sr(OH)₂).
n(Sr(OH)₂) = 0.0371 L · 0.138 mol/L.
n(Sr(OH)₂) = 0.0051 mol; amount of the strontium hydroxide.
From balanced chemical reaction: n(Sr(OH)₂) : n(HCl) = 1 : 2.
n(HCl) = 2 · n(Sr(OH)₂).
n(HCl) = 2 · 0.0051 mol.
n(HCl) = 0.0102 mol; amount of the hydrochloric acid.
<span>1.16 moles/liter
The equation for freezing point depression in an ideal solution is
ΔTF = KF * b * i
where
ΔTF = depression in freezing point, defined as TF (pure) ⒠TF (solution). So in this case ΔTF = 2.15
KF = cryoscopic constant of the solvent (given as 1.86 âc/m)
b = molality of solute
i = van 't Hoff factor (number of ions of solute produced per molecule of solute). For glucose, that will be 1.
Solving for b, we get
ΔTF = KF * b * i
ΔTF/KF = b * i
ΔTF/(KF*i) = b
And substuting known values.
ΔTF/(KF*i) = b
2.15âc/(1.86âc/m * 1) = b
2.15/(1.86 1/m) = b
1.155913978 m = b
So the molarity of the solution is 1.16 moles/liter to 3 significant figures.</span>
Answer:
4. Atmospheric pressure decreases as altitude increases.
Explanation:
hope this helps and is right. p.s i really need brainliest :)
Answer:
Explanation:
trueeeeeeeeeeeeeeeeeeeeeeeeeee