From the chemical formula the total mass of the compound can be determined. The mass of the 1 mole of the compound is its molar mass. The atom by which the molecule is generated, the mass of these atoms are expressed in terms of amu or atomic unit mass, but after formation of a molecule in a particular ratio the mass of each of the atom becomes the total molecular weight of the generated molecule. In this case the molecule posses three atoms X, Y and Z which are in a ratio of 2:2:7. Thus the chemical formula of the compound can be written as
.
So the total mass of the compound in amu is {(2×47)+(2×42)+(7×16)} = {94+84+112}=290 amu.
Thus 1 mole of the compound contains 290 amu or 290 g by mass.
Henceforth 20 gram of the compound is equivalent to (20/290) = 0.068 mole.
Answer:
The value of y = 5.1478
Explanation:
The linear equation is an equation obtained when a linear polynomial is equated to zero. When the solution obtained on solving the equation is substituted in the equation in place of the unknown, the equation gets satisfied.
The given equation: 5.3 x 10- (y)(2y) = 0
⇒ 53 - 2y² = 0
⇒ 2y² = 53
⇒ y² = 53 ÷ 2 = 26.5
⇒ y = √26.5 = 5.1478
Answer:
1.5 M.
Explanation:
- Molarity (M) is defined as the no. of moles of solute dissolved in a 1.0 L of the solution.
<em>M = (no. of moles of LiBr)/(Volume of the solution (L).</em>
<em></em>
∵ no. of moles of LiBr = (mass/molar mass) of LiBr = (97.7 g)/(86.845 g/mol) = 1.125 mol.
Volume of the solution = 750.0 mL = 0.75 L.
∴ M = (no. of moles of luminol)/(Volume of the solution (L) = (1.125 mol)/(0.75 L) = 1.5 M.
Answer:
Given, 0.29 g of hydrocarbon produces 448ml of CO2 at STP. then, C2H5 is the emperical formula of hydrocarbon . n = 2 , hence, molecular formula will be C4H10
Answer: The correct option is 4.
Explanation: All the options will undergo some type of radioactive decay processes. There are 3 decay processes:
1) Alpha decay: It is a decay process in which alpha particle is released which has has a mass number of 4 and a charge of +2.

2) Beta-minus decay: It is a decay in which a beta particle is released. The beta particle released has a mass number of 0 and a charge of (-1).

3) Beta-plus decay: It is a decay process in which a positron is released. The positron released has a mass number of 0 and has a charge of +1.

For the given options:
Option 1: This nuclei will undergo beta-plus decay process to form 

Option 2: This nuclei will undergo beta-minus decay process to form 

Option 3: This nuclei will undergo a beta minus decay process to form 

Option 4: This nuclei will undergo an alpha decay process to form 

Hence, the correct option is 4.