Sodium- Na
most active element- Fluorine
lightest element- Hydrogen
<span>Important information to solve the exercise :
Substance ΔHf (kJ/mol):
HCl(g)= −92.0 </span><span>kJ/mol
Al(OH)3(s)= −1277.0 </span><span><span>kJ/mol
</span> H2O(l)= −285.8 </span><span>kJ/mol
AlCl3(s) =−705.6 </span><span>kJ/mol
</span><span>Al(OH)3(s)+3HCl(g)→AlCl3(s)+3H2O(l)
reactants products
products- reactants:</span><span>
(−705.6) + (3 x −285.8) - ( −1277.0 ) - (3 x −92.0 ) = - 10.0 </span>kJ per mole at 25°C
<span>
</span>
Answer:
Hydrogen = 2.5 * 10^21
Explanation:
Chemical Formula Glucose: C₆H₁₂O₆
One of the ways you could do this is to notice that for every carbon atom there are two Hydrogen atoms. You can state this more formally by using the formula to set up a ratio: 12/6 = hydrogen to Carbon
So if there are 1.250 * 10^21 Carbon atoms in the Glucose sample, then there will be twice as many hydrogen atoms.
H = 2 * 1.25 * 10^21 = 2.5 * 10^21 atoms
You could do this more formally by setting up a proportion.
6 Carbon / 12 Hydrogen = 1.25*10^21 / x Cross Multiply
6*x = 12 * 1.25*10^21 Combine the right
6x = 1.5 * 10^22 Divide by 6
x = 2.5 * 10^21
<h3>
Answer:</h3>
5.55 mol C₂H₅OH
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Tables
- Moles
<u>Stoichiometry</u>
- Using Dimensional Analysis
- Analyzing Reactions RxN
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] C₆H₁₂O₆ → 2C₂H₅OH + 2CO₂
[Given] 500. g C₆H₁₂O₆ (Glucose)
[Solve] moles C₂H₅OH (Ethanol)
<u>Step 2: Identify Conversions</u>
[RxN] 1 mol C₆H₁₂O₆ → 2 mol C₂H₅OH
[PT] Molar mass of C - 12.01 g/mol
[PT] Molar Mass of H - 1.01 g/mol
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of C₆H₁₂O₆ - 6(12.01) + 12(1.01) + 6(16.00) = 180.18 g/mol
<u>Step 3: Stoichiometry</u>
- [DA] Set up conversion:

- [DA} Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
5.55001 mol C₂H₅OH ≈ 5.55 mol C₂H₅OH
Answer:
Explanation:
Not likely to form any bonds because in it's last she'll it has 8 electrons and is therefore stable