Thermal energy is the sum of the kinetic and potential energy of all the particles in an object. The figure shows that if either potential or kinetic energy increases, thermal energy increases.
hope it really helps...!!!
Answer:
Inherited traits are passed from parent to offspring by information coded in
the DNA or Deoxyribonucleic Acid
Answer:
91383 J
Explanation:
The equation of the reaction can be represented as:
------>
Given that:
The standard enthalpy of formation of NO(g) is 91.3 kJ⋅mol−1 at 298.15 K.
The equation below shown the reaction between the enthalpy of reaction at a particular temperature to another.
= 
where:
= enthalpy of reaction
= the difference in the heat capacities of the products and the reactants.
∴
=

= ![1(91300 J.mol^{-1} ) +\int\limits^{435}_{298.15} [{(29.86)-\frac{1}{2}(29.38)-\frac{1}{2}29.13}]J.K^{-1}.mol^{-1} \, dT'](https://tex.z-dn.net/?f=1%2891300%20J.mol%5E%7B-1%7D%20%29%20%2B%5Cint%5Climits%5E%7B435%7D_%7B298.15%7D%20%5B%7B%2829.86%29-%5Cfrac%7B1%7D%7B2%7D%2829.38%29-%5Cfrac%7B1%7D%7B2%7D29.13%7D%5DJ.K%5E%7B-1%7D.mol%5E%7B-1%7D%20%5C%2C%20dT%27)
= 91300 J + (0.605 J.K⁻¹)(435-298.15)K
= 91382.79 J
≅ 91383 J
Answer:
A/1. 10.9 mol O2
Explanation:
583 g x 1 mol SO3 x 3 mol O2 /
80.057 g mol SO3 x 2 mol SO3
- You just need to find molar mass of SO3, which is 80.057 g.
- Everything else came from formula. Further explanation...
- Always start with what they give, such as 583 g. Then find 1 mol of what is being produced, in this it is SO3. We already found this because we did molar mass above. Next. find how many moles of what they want, which is O2. Look in equation and you can see 3 mol in from of O2. Next, do the same for SO3 and you can find 3 mol in front of that. Lastly, just do the math.
- If you need a further explanation or more help on any problems I would be happy to help, just let me know.
Answer:
Along period electronegativity and ionization energy increases.
Along group electronegativity and ionization energy decreases.
Explanation:
Along period:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. Thus the attraction of the atoms for valance electrons increases. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required, and electronegativity also increases.
Along group:
As we move from top to bottom in periodic table the atomic sizes increases.The electrons are added in next energy level in every next element. Thus the valance electrons farther away from the nucleus and hold of nucleus becomes weaker, because of weak nuclear attraction atomic radii increases and electronegativity and ionization energy decreases.