Answer:
7,79 seconds
Explanation:

You need to use the acceleration formula. A is acceliration,
is change in velocity and t is time.
You need to multiply the formula with t and divide by a and you get
a*t=
t=
/a
after that you just need to insert the numbers
change in velocity is 76.4 minus 0.
acceliration is gravitational acceleration which is 9.81.
After that you get
t=76.4/9.81
t= 7,787971458 s
Answer:
change in momentum, 
Average Force, 
Explanation:
Given:
angle of kicking from the horizon, 
velocity of the ball after being kicked, 
mass of the ball, 
time of application of force, 
We know, since body is starting from the rest
.....................(1)


Now the components:


similarly


also, impulse
.........................(2)
where F is the force applied for t time.
Then from eq. (1) & (2)



Now, the components


&


Zero.
Acceleration is defined as the change in velocity over time.
Since in your case there is no change, there is no acceleration, so it is zero:
Or in formula: <span>a=<span><span>Δv</span>t</span></span>
Where a=acceleration, <span>Δv</span>=change in velocity and t=time
Answer:
Explanation:
1. Mechanical waves require material medium for their propagation while electromagnetic waves do not require material medium for their propagation.
2. Mechanical waves can either be transverse or longitudinal while electromagnetic waves are transverse.(Transverse waves are waves in which the vibration of the particules of the medium is perpendicular to the direction of the motion of wave. E.g water waves, waves of a plucked string and all electromagnetic waves RIVUXG . Longitudinal waves are waves whose vibration are parallel to the direction of the motion of the medium e.g waves in strings, sound waves.e.t.c)
Answer:
0.78333 m/s in the opposite direction
1.566 m/s in the same direction
Explanation:
= Mass of penny = 0.0025 kg
= Mass of nickel = 0.005 kg
= Initial Velocity of penny = 2.35 m/s
= Initial Velocity of nickel = 0 m/s
= Final Velocity of penny
= Final Velocity of nickel
As momentum and Energy is conserved


From the two equations we get

The final velocity of the penny is 0.78333 m/s in the opposite direction

The final velocity of the nickel is 1.566 m/s in the same direction