1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
myrzilka [38]
3 years ago
8

Birds, squirrels, and chipmunks all living in the same tree, using the same resources, are an example of:

Physics
1 answer:
Ulleksa [173]3 years ago
4 0

Explanation :  

In Interspecific competition, different individuals of different species fight for the same resource in an ecosystem. The resources can be food or living space.

Birds belong to the group of<em> aves</em>, squirrels and chipmunks are from the family of <em>Sciuridae</em>.  

All three are from different species. They are on the same ecosystem i.e. tree. They form the interspecific competitions.

You might be interested in
HEEEEELLLLLLLLLLLLLLLLPPPPPPPPPPPPPPP i need to get unstuck
pochemuha
Geyshbdgsggefsgahevayagvdvdgavd
8 0
3 years ago
Read 2 more answers
A gas, behaving ideally, has a pressure P1 and at a volume V1. The pressure of the gas is changed to P2. Using Avogadro’s, Charl
Bond [772]

Answer:

Boyle's Law

\therefore P_1.V_1=P_2.V_2

Explanation:

Given that:

<u><em>initially:</em></u>

pressure of gas, = P_1

volume of gas, = V_1

<em><u>finally:</u></em>

pressure of gas, = P_2

volume of gas, = V_2

<u>To solve for final volume</u> V_2

<em>According to Avogadro’s law the volume of an ideal gas is directly proportional to the no. of moles of the gas under a constant temperature and pressure.</em>

<em>According to the Charles' law, at constant pressure the volume of a given mass of an ideal gas is directly proportional to its temperature.</em>

But here we have a change in the pressure of the Gas so we cannot apply Avogadro’s law and Charles' law.

Here nothing is said about the temperature, so we consider the Boyle's Law which states that <em>at constant temperature the volume of a given mass of an ideal gas is inversely proportional to its pressure.</em>

Mathematically:

P_1\propto \frac{1}{V_1}

\Rightarrow P_1.V_1=k\ \rm(constant)

\therefore P_1.V_1=P_2.V_2

5 0
3 years ago
I'm not sure what equation to use.
Lelechka [254]
I would think that you would multiply then divide
7 0
3 years ago
When using a calorimeter, the initial temperature of a metal is 70.4C. The initial temperature of the water is 23.6C. At the end
Sunny_sXe [5.5K]

1) 29.8 C

At the beginning, the metal is at higher temperature (70.4 C) while the water is at lower temperature (23.6 C). When they are put in contact, the metal transfers heat to the water, until they reach thermal equilibrium: at thermal equilibrium the two objects (the metal and the water have same temperature). Therefore, since the temperature of the water at thermal equilibrium is 29.8 C, the final temperature of the metal must be the same (29.8 C).

2) 6.2 C

The temperature change of the water is given by the difference between its final temperature and its initial temperature:

\Delta T = T_f - T_i

where

T_f = 29.8 C\\T_i = 23.6 C

Substituting into the formula,

\Delta T=29.8 C-23.6 C=6.2 C

And the positive sign means that the temperature of the water has increased.

3) -40.6 C

The temperature change of the metal is given by the difference between its final temperature and its initial temperature:

\Delta T = T_f - T_i

where

T_f = 29.8 C\\T_i = 70.4 C

Substituting into the formula,

\Delta T=29.8 C-70.4 C=-40.6 C

And the negative sign means the temperature of the metal has decreased.

5 0
3 years ago
Read 2 more answers
The position of a particle as it moves along an y axis is given by y = (2.0cm)sin(πt/4), with t in second and y in centimeters.
irina [24]

Part a)

At t = 0  the position of the object is given as

x = 0

At t = 2

x = 2 sin(\pi/2) = 2cm

so displacement of the object is given as

d = 2 - 0 = 2cm

so average speed is given as

v_{avg} = \frac{2}{2} = 1 cm/s

Part b)

instantaneous speed is given by

v = \frac{dy}{dt}

v = 2cos(\pi t/4 ) * \frac{\pi}{4}

now at t= 0

v = \frac{\pi}{2} cm/s

at t = 1

v = 2 cos(\pi/4) * \frac{\pi}{4}

v = \frac{\pi}{2\sqrt2}

at t = 2

v = 0

Part c)

Average acceleration is given as

a_{avg} = \frac{v_f - v_i}{t}

a_{avg} = \frac{0 - \frac{\pi}{2}}{2}

a = -\frac{\pi}{4} cm/s^2

Part d)

Now for instantaneous acceleration

As we know that

a =- \omega^2 y

at t = 0

a = -\frac{\pi^2}{16} * 0 = 0 cm/s^2

at t = 1

y = \sqrt2 cm

now we have

a = -\frac{\pi^2}{16}*\sqrt2

At t = 2 we have

y = 2 cm

a = -\frac{\pi^2}{16}*2

a = -\frac{\pi^2}{8}

<em>so above is the instantaneous accelerations</em>

7 0
3 years ago
Other questions:
  • A parachutist with a camera, both descending at a speed of 10.8 m/s, releases that camera at an altitude of 50 m. In this proble
    11·1 answer
  • A mouse runs along a baseboard in your house. The mouse's position as a function of time is given by x(t)=pt2+qt, with p = 0.36
    9·1 answer
  • The first part of the brain to be stimulated and affected by alcohol is the
    9·1 answer
  • A uniform diving board, 12 meters long and 20 kg in mass, is hinged at P, which is 5 meters from the edge of the platform. An 80
    13·1 answer
  • Dierdre drew a diagram to compare the three types of mirrors.
    7·1 answer
  • How many variables should there be in a well-designed experiment?
    8·1 answer
  • Solve the problem.
    13·1 answer
  • This graph indicates that the kinetic energy of an object is increasing. What is the most reasonable explanation for this observ
    10·1 answer
  • Joule is a SI unit of power <br>Measuring cylinder is used to measure the volume of a liquid<br>​
    9·1 answer
  • If you we're in charge of designing a wire to cart electricity across your city, state or provide, which of the following proper
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!