Answer:
64J of energy must have been released.
Explanation:
Step 1: Data given
One reactant contains 346 J of chemical energy, the other reactant contains 153 J of chemical energy.
The product contains 435 J of chemical energy.
Step 2:
Since the energy is conserved
Sum of energy of Reactants = Energy of Products
Sum of energy of Reactants = 346 J + 153 J = 499 J
The energy of the product = 435 J
435 < 499
This means energy must have been lost as heat.
Step 3: Calculate heat released
499 J - 435 J = 64 J
64J of energy must have been released.
Answer:
2.44 K IS THE TEMPERATURE OF THE GAS
Explanation:
PV = nRT
P = 0.5 atm
V = 2 L
n = 5 moles
R = 0.082 L atm mol^-1 K^-1
T = ?
Substituting for T in the equation, we obtain:
T = P V / nR
T = 0.5 * 2 / 5 * 0.082
T = 1 / 0.41
T = 2.44 K
The temperature of the gas is 2.44 K
Answer:
390
Explanation:
Specific heat capacity= heat/mass × temperature

Remember you convert gram into kilogram and 1 gram =0.001 kilogram