Answer:
Explanation:
The mechanical properties of a material affect how it behaves as it is loaded. The elastic modulus of the material affects how much it deflects under a load, and the strength of the material determines the stresses that it can withstand before it fails
8.8 × 10-5 M is the [H3O+] concentration in 0.265 M HClO solution.
Explanation:
HClO is a weak acid and does not completely dissociate in water as ions.
the equation of dissociation can be written and ice table to be formed.
HClO +H2O ⇒ ClO- + H3O+
I 0.265 0 0
C -x +x +x
E 0.265-x +x +x
Now applying the equation of Ka, where Ka is given as 2.9 × 10-8.
Ka = ![\frac{[ClO-][H3O+]}{[HClO]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BClO-%5D%5BH3O%2B%5D%7D%7B%5BHClO%5D%7D)
2.9 × 10^-8 = ![\frac{[x] [x]}{[0.265-x]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bx%5D%20%5Bx%5D%7D%7B%5B0.265-x%5D%7D)
= 7.698 x
x = 8.8 × 10-5 M
The hydronium ion concentration is 8.8 × 10-5 M in 0.265 M solution of HClO.
The mass of sodium chloride at the two parts are mathematically given as
- m=10,688.18g
- mass of Nacl(m)=39.15g
<h3>What is the mass of sodium chloride that can react with the same volume of fluorine gas at STP?</h3>
Generally, the equation for ideal gas is mathematically given as
PV=nRT
Where the chemical equation is
F2 + 2NaCl → Cl2 + 2NaF
Therefore
1.50x15=m/M *(1.50*0.0821)
1-50 x 15=m/58.5 *(1.50*0.0821)
m=10,688.18g
Part 2
PV=m'/MRT
1*15=m'/58.5*0.0821*273
m'=39.15g
mass of Nacl(m)=m'=39.15g
Read more about Chemical Reaction
brainly.com/question/11231920
#SPJ1
I would say because the respiratory system brings in the oxygen for the body and the circulatory system moves it throughout the body with the blood
An electron has a negative charge of one
An neutron has no charge (hence, neutral)
An proton has a positive charge of one
~