Answer: D!! ( difference in the potential energy of the reactants and products )
Explanation:
i have the same test
I think the best answer is the last option. A scatter plot is the appropriate type of graph for the student to use to show the percent samples per group. This plot is somewhat similar to line graphs. However, they are use for a specific purpose which is to show the relationship between two parameters. In this case, the correlation between pH and the percent of samples.
Answer:
Explanation:
is insufficient to overcome intermolecular forces.
Answer : The mass of copper deposit is, 1.98 grams
Explanation :
First we have to calculate the charge.
Formula used :
where,
Q = charge = ?
I = current = 10 A
t = time = 10 min = 600 sec (1 min = 60 sec)
Now put all the given values in this formula, we get
Now we have to calculate the number of atoms deposited.
As, 1 atom require charge to deposited =
Number of atoms deposited = atoms
Now we have to calculate the number of moles deposited.
Number of moles deposited = moles
Now we have to calculate the mass of copper deposited.
1 mole of Copper has mass = 63.5 g
Mass of Copper Deposited =
Therefore, the mass of copper deposit is, 1.98 grams
Answer:
Step 1;
q = w = -0.52571 kJ, ΔS = 0.876 J/K
Step 2
q = 0, w = ΔU = -7.5 kJ, ΔH = -5.00574 kJ
Explanation:
The given parameters are;
= 100 N·m
= 327 K
= 90 N·m
Step 1
For isothermal expansion, we have;
ΔU = ΔH = 0
w = n·R·T·ln(/) = 1 × 8.314 × 600.15 × ln(90/100) = -525.71
w ≈<em> -0.52571</em> kJ
At state 1, q = w = -0.52571 kJ
ΔS = -n·R·ln(/) = -1 × 8.314 × ln(90/100) ≈ 0.876
ΔS ≈ 0.876 J/K
Step 2
q = 0 for adiabatic process
ΔU = 25×(27 - 327) = -7,500
w = ΔU = <em>-7.5 kJ</em>
ΔH = ΔU + n·R·ΔT
ΔH = -7,500 + 8.3142 × 300 = -5,005.74
ΔH = ΔU = <em>-5.00574 kJ</em>