Answer:
If an object is accelerating the forces acting on the object are BALANCED.
Explanation
if an object is moving at a constant rate of acceleration, the the forces acting upon it are balanced .
Their weights could be different.
Their volumes could be different.
Their densities could be different.
The volume for an ounce of lead is much different than an ounce of aluminum.
the weight of a cubic meter of balsa wood is much different (and much lighter) than a cubic meter of water. That's why the ancients used balsa for their rafts.
Enthalpy is a state function
Explanation:
The Hess's law allows us to determine the enthalpy change of a reaction because enthalpy is a state function. It does not depend on the individual path take in going from reactants to products in the reaction.
- Enthalpy changes are the heat changes accompanying physical and chemical changes.
- It is the difference between the heat content of product in the final state and the reactants.
- Enthalpy changes for some reactions are not easily measurable experimentally.
- To calculate such heat changes, we apply the Hess's law of heat summation.
- The law states that "the heat change of a reaction is the same whether it occurs in a step or several steps".
- The Hess's law is simply based on the first law of thermodynamics by which we know that energy is conserved in every system.
learn more:
Hess's law brainly.com/question/11293201
#learnwithBrainly
Answer:
2.1056L or 2105.6mL
Explanation:
We'll begin by calculating the number of mole in 10g of Na2CO3. This can be obtained as follow:
Molar mass of Na2CO3 = (23x2) + 12 + (16x3) = 106g/mol
Mass of Na2CO3 = 10g
Mole of Na2CO3 =.?
Mole = mass /molar mass
Mole of Na2CO3 = 10/106
Mole of Na2CO3 = 0.094 mole
Next, we shall determine the number of mole CO2 produced by the reaction of 0.094 mole of Na2CO3. This is illustrated below:
Na2CO3 + 2HCl —> 2NaCl + H2O + CO2
From the balanced equation above,
1 mole of Na2CO3 reacted to produce 1 mole of CO2.
Therefore, 0.094 mole of Na2CO3 will also react to 0.094 mole of CO2.
Next, we shall determine the volume occupied by 0.094 mole of CO2 at STP. This is illustrated below:
1 mole of a gas occupy 22.4L at STP. This implies that 1 mole CO2 occupies 22.4L at STP.
Now, if 1 mole of CO2 occupy 22.4L at STP, then, 0.094 mole of CO2 will occupy = 0.094 x 22.4 = 2.1056L
Therefore, the volume of CO2 produced is 2.1056L or 2105.6mL
Answer:
The baseball is thrown twice as fast as the softball in the same direction.
Explanation: