Answer: acetone molecule ( CH₃-CO-CH₃)
Explanation:
1) Acetone is CH₃-CO-CH₃
2) That is a molecule (build up of covalent bonds).
3) When dissolved, covalent bonded compounds remain as separate molecules, then it is said that the major species present in the solution is the molecule. The molecules of acetone are surrounded (sovated) by the molecules of water.
This as opposed to the case of ionic compounds that ionize. When a compound as NaCl dissolves in water, it ionizes completely, so the major speceies are not NaCl formulas, but the ions Na⁺ and Cl⁻, not molecules.
That leads to the answer: the major species present when acetone is dissolved in water is the molecules of acetone (you do not need to state the fact that the molecules of water are part of the solution, because that is not the target of the question).
Answer:
The laws are: (1) Every object moves in a straight line unless acted upon by a force.
(2) The acceleration of an object is directly proportional to the net force exerted and inversely proportional to the object's mass.
(3) For every action, there is an equal and opposite reaction.
Answer: There are
of gas are in a container with a volume of 9.55 mL at 35 °C and a pressure of 895 mmHg
Explanation:
According to ideal gas equation:

P = pressure of gas = 895 mm Hg= 1.18 atm (760 mm Hg= 1 atm)
V = Volume of gas = 9.55 ml = 0.00955 L (1 L=1000ml)
n = number of moles = ?
R = gas constant =
T =temperature =


Thus there are
of gas are in a container with a volume of 9.55 mL at 35 °C and a pressure of 895 mmHg
1. Humidity
2. Temperature
3. Rainfall
In general, the electron pairs in a molecule that will adopt a shape to maximize their distance far apart, even charges repel each other as well as unlike charges attract,
for example H2O has two lone electrons pairs but it adopts an angular shape. Hope this help!!
Answer:
ΔG° of reaction = -47.3 x
J/mol
Explanation:
As we can see, we have been a particular reaction and Energy values as well.
ΔG° of reaction = -30.5 kJ/mol
Temperature = 37°C.
And we have to calculat the ΔG° of reaction in the biological cell which contains ATP, ADP and HPO4-2:
The first step is to calculate the equilibrium constant for the reaction:
Equilibrium Constant K = ![\frac{[HPO4-2] x [ADP]}{ATP}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BHPO4-2%5D%20x%20%5BADP%5D%7D%7BATP%7D)
And we have values given for these quantities in the biological cell:
[HP04-2] = 2.1 x
M
[ATP] = 1.2 x
M
[ADP] = 8.4 x
M
Let's plug in these values in the above equation for equilibrium constant:
K = ![\frac{[2.1x10^{-3}] x [8.4x10^{-3}] }{[1.2 x 10^{-2}] }](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2.1x10%5E%7B-3%7D%5D%20x%20%5B8.4x10%5E%7B-3%7D%5D%20%7D%7B%5B1.2%20x%2010%5E%7B-2%7D%5D%20%7D)
K = 1.47 x
M
Now, we have to calculate the ΔG° of reaction for the biological cell:
But first we have to convert the temperature in Kelvin scale.
Temp = 37°C
Temp = 37 + 273
Temp = 310 K
ΔG° of reaction = (-30.5
) + (8.314)x (310K)xln(0.00147)
Where 8.314 = value of Gas Constant
ΔG° of reaction = (-30.5 x
) + (-16810.68)
ΔG° of reaction = -47.3 x
J/mol