B. Magnesium + Hydrogen Sulfide (Reactors) ----> Magnesium Sulfide + Hydrogen (Products)
Answer:
12.99
Explanation:
<em>A chemist dissolves 716. mg of pure potassium hydroxide in enough water to make up 130. mL of solution. Calculate the pH of the solution. (The temperature of the solution is 25 °C.) Be sure your answer has the correct number of significant digits.</em>
Step 1: Given data
- Mass of KOH: 716. mg (0.716 g)
- Volume of the solution: 130. mL (0.130 L)
Step 2: Calculate the moles corresponding to 0.716 g of KOH
The molar mass of KOH is 56.11 g/mol.
0.716 g × 1 mol/56.11 g = 0.0128 mol
Step 3: Calculate the molar concentration of KOH
[KOH] = 0.0128 mol/0.130 L = 0.0985 M
Step 4: Write the ionization reaction of KOH
KOH(aq) ⇒ K⁺(aq) + OH⁻(aq)
The molar ratio of KOH to OH⁻is 1:1. Then, [OH⁻] = 0.0985 M
Step 5: Calculate the pOH
We will use the following expression.
pOH = -log [OH⁻] = -log 0.0985 = 1.01
Step 6: Calculate the pH
We will use the following expression.
pH + pOH = 14
pH = 14 - pOH = 14 -1.01 = 12.99
Answer:
Because Oxygen shares 2 electrons with mutual bond interaction forming covalent bond . thus it is diatomic due to K shell 2 electrons mutual sharing .
Explanation:
Wavelength is the distance of one frequency wave peak to the other and
is most commonly associated with the electromagnetic spectrum.[1]
Calculating wavelength is dependent upon the information you are given.
If you know the speed and frequency of the wave, you can use the basic
formula for wavelength. If you want to determine the wavelength of light
given the specific energy of a photon, you would use the energy
equation. Calculating wavelength is easy as long as you know the correct
equation.