Answer:
No component is perfect. All have tolerances that can vary. If you construct a simple circuit where a 10 volt power supply feeds a 10 ohm resistor, you would expect to measure a current of one ampere. BUT - the wiring has some resistance too. This adds perhaps 0.1 ohms to the circuit. The resistor has a +-5% tolerance. If it is 5% high, it may measure 10.5 ohms. That's a total circuit resistance of 10.6 ohms. The power supply may have a tolerance of +-1%. Suppose it's 1% low. That's an output of 9.9 volts in real life. So you have 9.9 volts dropped across 10.6 ohms. you will measure closer to 0.934 amps instead of 1.000 amps. To make matters worse, most electronic components have a temperature coefficient, that is, their values change with different temperatures. You may get a completely different reading tomorrow if the temperature is different! Finally, with current measurements in particular, you are inserting the ammeter in series with the circuit under test. Ammeters have some inherent resistance too, so by putting the ammeter in the circuit, you are changing the very current you are trying to measure (a little)! Oh yeah, the ammeter has a tolerance too. Its reading may be off a little even if everything else is perfect. Sometimes you have to wonder how we get a decent reading at all. Fortunately the errors are usually fairly small, and not all tolerances are off in the same direction or off the maximum amount. They tend to cancel each other out somewhat. BUT - in rare circumstances everything CAN happen like I said, and the error can be huge.
Explanation:
Answer:
Volume of the concentrated solution, which is needed is 103.30 mL
Explanation:
Let's apply the formula for dilutions to solve the problem
Conc. Molarity . Conc. volume = Dil. Molarity . Dil volume
12.1 M . Conc. volume = 2.5 M . 500 mL
Conc. volume = (2.5 M . 500 mL) / 12.1M
Conc. volume = 103.30 mL
Answer:
NH3(g) + H2O(1) → NH4+(aq) + OH (aq)
HF(aq) + H2O(1) → H3O+(aq) + F (aq)
Explanation:
Acid-base reactions are chemical reactions involving acids and bases. Acids tend to ionize/dissociate in water, a property which determines their strength. Ionization of an acid refers to the acid losing its hydrogen ion (H+) in water solution. An acid ionizes or dissociates to form a conjugate base.
A strong acid is so because it ionizes completely in water i.e. loses all its hydrogen ion (H+) while a weak acid partially ionizes in water.
In the chemical reactions;
1) NH3(g) + H2O(1) → NH4+(aq) + OH (aq)
H20 loses its hydrogen ion (H+) in this reaction to form an anion (OH-). Hence, water (H20) is an acid in this case which ionizes to form a conjugate base (OH-). This is an example of ionization of acid.
2) HF(aq) + H2O(1) → H3O+(aq) + F (aq)
Hydrogen fluoride (HF) loses its hydrogen ion (H+) in the presence of water to form anion (F-). The HF is the acid while F- is it's conjugate base. Thus, an example of ionization of acid
<span>Answer:
.01 moles of D to .005 moles of L ~ so, .01+.005 = .015 total; using this total value, divide the portions of D and L.
so .01/.015 to .005/.015 ~ 67% D to 33% L.
And thus, the enantiomer excess will be 34%.</span>