It depends on the type of decay that is taking place if its a β+ it will decay into Mn-52 β- decays into Co-59
1.785714286 moles
The number of moles (n) for nitrogen is: [ n=50.0÷28.0 ] = 1.785714286 moles.
Here we will use the general formula of Nernst equation:
Ecell = E°Cell - [(RT/nF)] *㏑Q
when E cell is cell potential at non - standard state conditions
E°Cell is standard state cell potential = - 0.87 V
and R is a constant = 8.314 J/mol K
and T is the temperature in Kelvin = 73 + 273 = 346 K
and F is Faraday's constant = 96485 C/mole
and n is the number of moles of electron transferred in the reaction=2
and Q is the reaction quotient for the reaction
SO42-2(aq) + 4H+(aq) +2Br-(aq) ↔ Br2(aq) + SO2(g) +2H2O(l)
so by substitution :
0 = -0.87 - [(8.314*346K)/(2* 96485)*㏑Q → solve for Q
∴ Q = 4.5 x 10^-26
Emperic formula is SO subscript 2. Molecular formula would be SO subscript 2 multiply 1 so it's the same answer.