Answer:
The corona shines only about half as brightly as the Moon and is normally not visible to the unaided eye, because its light is overwhelmed by the brilliance of the solar surface. During a total solar eclipse, however, the Moon blocks out the light from the photosphere, permitting eye observations of the corona.
<span>the answer would be chemical</span>
Answer:
There is 17.1 kJ energy required
Explanation:
Step 1: Data given
Mass of ethanol = 322.0 grams
Initial temperature = -2.2 °C = 273.15 -2.2 = 270.95K
Final temperature = 19.6 °C = 273.15 + 19.6 = 292.75 K
Specific heat capacity = 2.44 J/g*K
Step 2: Calculate energy
Q = m*c*ΔT
⇒ m = the mass of ethanol= 322 grams
⇒ c = the specific heat capacity of ethanol = 2.44 J/g*K
⇒ ΔT = T2 - T1 = 292.75 - 270.95 = 21.8 K
Q = 322 * 2.44 * 21.8 = 17127.8 J = 17.1 kJ
There is 17.1 kJ energy required
I need the options to choose from
Send a more clearer picture...
But I will tell u the system of the Hadley cells---
METEOROLOGY
a large-scale atmospheric convection cell in which air rises at the equator and sinks at medium latitudes, typically about 30° north or south.