Answer:
λ = 2.38 × 10^(-7) m
Explanation:
We are given the work function for palladium as 503.7 kJ/mol.
Now let's convert this to KJ/electron.
We know from avogadro's number that;
1 mole of electron = 6.022 × 10^(23) electrons
Thus,
503.7 kJ/mol = 503.7 × 1/(6.022 × 10^(23)) = 8.364 × 10^(-22) KJ/electron = 8.364 × 10^(-19) J/electron
Formula for energy of a photon is;
E = hv
Where;
h is Planck's constant = 6.626 × 10^(-34) J.s
v is velocity
Now, v = c/λ
Where;
c is speed of light = 3 × 10^(8) m/s
λ is wavelength of light.
Thus;
E = hc/λ
Making λ the subject, we have;
λ = hc/E
λ = (6.626 × 10^(-34) × 3 × 10^(8))/(8.364 × 10^(-19))
λ = 2.38 × 10^(-7) m
Answer: 0.176 atm
Explanation: Solution attached:
Use Boyle's Law to find the new pressure of the gas.
P1V1 = P2V2
Derive for P2
P2 = P1V1 / V2
= 5.5 atm ( 4.8 L ) / 150 L
= 0.176 atm
Answer:
с
Explanation:
the first quantum number of an electron gives the information about the energy level the electron is in
We can use the dilution formula to find the volume of the diluted solution to be prepared
c1v1 = c2v2
Where c1 is concentration and v1 is volume of the concentrated solution
And c2 is concentration and v2 is volume of the diluted solution to be prepared
Substituting the values in the equation
15 M x 25 mL = 3 M x v2
v2 = 125 mL
The 25 mL concentrated solution should be diluted with distilled water upto 125 mL to make a 3 M solution
Answer: Option (d) is the correct answer.
Explanation:
Steps involved for the given reaction will be as follows.
Step 1:
(fast)
Rate expression for step 1 is as follows.
Rate = k ![[NO]^{2}](https://tex.z-dn.net/?f=%5BNO%5D%5E%7B2%7D)
Step 2: 
This step 2 is a slow step. Hence, it is a rate determining step.
Step 3.
(fast)
Here,
is intermediate in nature.
All the steps are bimolecular and it is a second order reaction. Also, there is no catalyst present in this reaction.
Thus, we can conclude that the statement step 1 is the rate determining step, concerning this mechanism is not directly supported by the information provided.