Answer:
A simple machine consisting of an axle to which a wheel is fastened so that torque applied to the wheel winds a rope or chain onto the axle, yielding a mechanical advantage equal to the ratio of the diameter of the wheel to that of the axle.
We can use the law of conservation of energy to solve the problem.
The total mechanical energy of the system at any moment of the motion is:

where U is the potential energy and K the kinetic energy.
At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:

But the mechanical energy must be conserved, Ef=Ei, so we have

and so, the potential energy at the top of the flight is
Explanation:
The given data is as follows.
Length (l) = 2.4 m
Frequency (f) = 567 Hz
Formula to calculate the speed of a transverse wave is as follows.
f = 
Putting the gicven values into the above formula as follows.
f = 
567 Hz = 
v = 544.32 m/s
Thus, we can conclude that the speed (in m/s) of a transverse wave on this string is 544.32 m/s.