consider the motion along the horizontal direction :
v₀ = initial velocity in horizontal direction as the ball rolls off the table = 3.0 m/s
X = horizontal displacement of the ball = 2.0 m
a = acceleration along the horizontal direction = 0 m/s²
t = time taken to land = ?
using the kinematics equation
X = v₀ t + (0.5) a t²
2.0 = 3.0 t + (0.5) (0) t²
t = 2/3
consider the motion of the ball along the vertical direction
v₀ = initial velocity in vertical direction as the ball rolls off the table = 0 m/s
Y = vertical displacement of the ball = height of the table = h
a = acceleration along the vertical direction = 9.8 m/s²
t = time taken to land = 2/3
using the kinematics equation
Y = v₀ t + (0.5) a t²
h = 0 t + (0.5) (9.8) (2/3)²
h = 2.2 m
C 2.2 m
Answer:
d. zero
Explanation:
Constant velocity means the acceleration is zero. In this case the velocity does not change,
hope this helps you
have a good day :)
Answer:
Explanation:
Let initial extension in the spring= x₀
Force on the spring = F₀
Let spring constant = k
Fo = k x₀
Fn = 3k x₀
Fn /Fo = 3
PEs0 ( ORIGINAL) =1/2 k x₀²
PEsn ( NEW) =1/2 k (3x₀)²
PEsn / PEs0 = 9