5.6 which would be acidic!
Answer:
f.The period is independent of the suspended mass.
Explanation:
The period of a pendulum is given by

where
L is the length of the pendulum
g is the acceleration due to gravity
From the formula, we see that:
1) the period of the pendulum depends only on its length, L, and it is proportional to the square root of the length
2) the period does not depend neither on the mass of the pendulum, nor on its amplitude of oscillation
So, the only correct statements are
f.The period is independent of the suspended mass.
Note: statement "e.The period is proportional to the length of the wire" is also wrong, because the period is NOT proportional to the length of the wire, but it is proportional to the square root of it.
Hi there!

We can use the conservation of angular momentum to solve.

Recall the equation for angular momentum:

We can begin by writing out the scenario as a conservation of angular momentum:

= moment of inertia of the merry-go-round (kgm²)
= angular velocity of merry go round (rad/sec)
= final angular velocity of COMBINED objects (rad/sec)
= moment of inertia of boy (kgm²)
= angular velocity of the boy (rad/sec)
The only value not explicitly given is the moment of inertia of the boy.
Since he stands along the edge of the merry go round:

We are given that he jumps on the merry-go-round at a speed of 5 m/s. Use the following relation:


Plug in the given values:

Now, we must solve for the boy's moment of inertia:

Use the above equation for conservation of momentum:

Answer: Acceleration will have 2 components, vertical and horizontal.
Net-vertical component can be positive, zero or negative depending upon the magnitude of the upward component of the applied acceleration.
Net-horizontal acceleration will be equal to the horizontal component of the applied acceleration.
Explanation:
Since acceleration is a vector quantity and the cart is being pushed up the ramp, the ramp would be at some angle to the horizontal and hence there will be vertical and horizontal components of acceleration.
<u>For vertical acceleration:</u>
If the magnitude of the upward component of the applied acceleration is greater than the value of the acceleration due to gravity then the net vertical acceleration will be upward because it will overtake the value of acceleration due to gravity.
In case the upward component of the applied acceleration is lesser than the value of the acceleration due to gravity then the net vertical acceleration will be downward.
<u>For horizontal acceleration:</u>
This component remains unaffected and is equal to the horizontal component of the applied acceleration because there is no other acceleration acting in the horizontal direction.
But the net acceleration will not be solely in the vertical or horizontal direction because the block has to move forward on the inclined ramp so there will always exist a horizontal and a vertical component making the net acceleration to parallel to the ramp in upward direction if the body is going up the ramp.
Reflecting telescope. Reflecting telescopes tend to have larger objective (due to the use of mirrors, mirrors are a lot cheaper than lenses) and have the ability to collect more light, while refracting telescopes are limited to objective lenses with smaller diameters due to their structural limitations (chromatic abbreviation, for example). Therefore, reflecting telescopes should be better at viewing faint distant stars