Answer:
Acosθ
Explanation:
The x-component of a vector is defined as :
Magnitude * cosine of the angle
Maginitude * cosθ
The magnitude is represented as A
Hence, horizontal, x - component of the vector is :
Acosθ
Furthermore,
The y-component is taken as the sin of the of the angle multiplied by the magnitude
Vertical, y component : Asinθ
Answer:
a) 2.43 m/s
b) 4.83 m/s
c) 0.023 m/s²
Explanation:
a) Both cars cover a distance of 510 m in 210 s. Since car A has no acceleration
Speed = Distance / Time

Velocity of car A is 2.43 m/s
t = Time taken = 210 seconds
u = Initial velocity
v = Final velocity
s = Displacement = 510 m
a = Acceleration
c)

Acceleration of car B is 0.023 m/s²
b)

Final velocity of car B is 4.83 m/s
Two forces 3N and 4N act on a body in a direction due north From East, the equilibrant's angle is given by
.
<h3>What are equilibrium and resultant force?</h3>
The equilibrium force is the balanced force when the net force acting is zero and is the exact opposite of the consequent force. The resultant force is one single force replaced by numerous forces.
<h3>Briefing:</h3>
3N and 4N are the two forces pulling on a body.
The forces work along the North and the East, which are perpendicular to one another.
The resultant of the forces, which is provided by the equilibrant force,
R = √(3)²+(4)²
R = 5N
From East, the equilibrant's angle is given by

To know more about equilibrium force visit:
brainly.com/question/12582625
#SPJ9
Answer:
Option A = 1.
Explanation:
So, in order to solve this question we are given the Important infomation or data or parameters in the question above as;
(1). First, Both objects A and D represent fixed.
(2). Both objects A and D are negatively-charged particles of equal magnitude.
(3). "Object B represents a fixed, positively-charged particle (equal, but opposite charge from A and D)."
(4). "Object C shows a moving, positively-charged particle."
So, our mission is to determine the arrow that would correctly show the force of attraction or repulsion on object C caused by the other two objects.
We can do that by drawing out the forces of attraction and the resultants. Therefore, CHECK THE ATTACHED FILE/PICTURE FOR THE DRAWINGS.
The forces of attraction due to objects A and B on on object C will be towards themselves. Hence, the resultant is ONE(1).
Answer:
15.3 m/s
Explanation:
Radius of orbit= 6400+6300 = 12700 km
Circumference of orbit= 2*(22/7)*12700 =79796.45*10^3 m
Now,
Speed= Distance / Time
= 79796.45*10^3/(24*60*3600)
= 15.3 m/s