Answer:
I am going to guess it shows that the balloon is going downwards because the speed of rise is in the negatives for the last 2.
Answer:
1. E x 4πr² = ( Q x r³) / ( R³ x ε₀ )
Explanation:
According to the problem, Q is the charge on the non conducting sphere of radius R. Let ρ be the volume charge density of the non conducting sphere.
As shown in the figure, let r be the radius of the sphere inside the bigger non conducting sphere. Hence, the charge on the sphere of radius r is :
Q₁ = ∫ ρ dV
Here dV is the volume element of sphere of radius r.
Q₁ = ρ x 4π x ∫ r² dr
The limit of integration is from 0 to r as r is less than R.
Q₁ = (4π x ρ x r³ )/3
But volume charge density, ρ = 
So, 
Applying Gauss law of electrostatics ;
∫ E ds = Q₁/ε₀
Here E is electric field inside the sphere and ds is surface element of sphere of radius r.
Substitute the value of Q₁ in the above equation. Hence,
E x 4πr² = ( Q x r³) / ( R³ x ε₀ )
it is also known as formula for circumfrence which is 2 times pi times radius. if radius was 5 then the circumfrence would be 10pi.
Although the video is not found here, the sentence makes reference to the transmission spectrum of colored filters.
<h3>What is the transmission spectrum?</h3>
The transmission spectrum indicates the light portion having a given wavelength that can be passed through a filter.
This spectrum (transmission spectrum) depends on the physical separation of the particles that form the filter.
In conclusion, although the video is not found here, the sentence makes reference to the transmission spectrum of colored filters.
Learn more about the transmission spectrum here:
brainly.com/question/1287536
#SPJ1
The answer is C. Final position minus initial position.