The wavelength is 2m.
Hence, Option c) 2m is the correct answer
Given that;
Frequency;
Speed; 
Wavelength; 
using the expression for the relations between wavelength, frequency and speed of wave:

Where
is wavelength, f is frequency and v is speed.
We substitute our given values into the equation

The wavelength is 2m.
Hence, Option c) 2m is the correct answer.
To learn more about wavelength, click here: brainly.com/question/1347107
It's weird but technically correct to say that a radio wave can be considered a low-frequency light wave. Radio and light are both electromagnetic waves. The only difference is that radio waves have much much much longer wavelengths, and much much much lower frequencies, than light waves have. But they're both the same physical phenomenon.
However, a radio wave CAN'T also be considered to be a sound wave. These two things are as different as two waves can be.
-- Radio is an electromagnetic wave. Sound is a mechanical wave.
-- Radio waves travel more than 800 thousand times faster than sound waves do.
-- Radio waves are transverse waves. Sound waves are longitudinal waves.
-- Radio waves can travel through empty space. Sound waves need material stuff to travel through.
-- Radio waves can be detected by radio, TV, and microwave receivers. Sound waves can't.
-- Sound waves can be detected by our ears. Radio waves can't.
-- Sound waves can be generated by talking, or by hitting a frying pan with a spoon. Radio waves can't.
-- Radio waves can be generated by an alternating current flowing through an isolated wire. Sound waves can't.
The answer is 9.8 ms^-2, because there is only one force acting on the object so the acceleration will be numerically equal to the gravitational field strength.
A magnetic field is a force field, invisibly pushing electrically charged objects just as a gravitational field pulls objects with mass. Whereas all objects with mass exert a gravitational field, however, not all objects have a magnetic field. Magnetic fields are created by electrical charges. Thanks to their structure at the atomic level, some substances -- like the iron in magnets -- have a permanent magnetic field.