1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dalvyx [7]
3 years ago
10

A) Find the gravitational field strength of an asteroid with the mass of 3.2 * 10^3 kg and an average radius of 30 km when at a

distance of 3 km from its surface
b) if an astronaut popped out of a worm hole (at rest) at 3 km from the asteroid
i) how long would it take him to fall to the asteroid’s surface?
ii) how fast would he be traveling when he hit it? (Assume acceleration stays constant)
iii) if a year is 3.16 * 10^7 s, how many years would it take for the astronaut to reach the asteroid?
Please show work, thanks
Physics
1 answer:
MrMuchimi3 years ago
8 0

a) 1.96\cdot 10^{-16} m/s^2

The gravitational field strength near the surface of the asteroid is given by:

g=\frac{GM}{(R+h)^2}

where

G is the gravitational constant

M is the mass of the asteroid

R the radius of the asteroid

h is the distance from the surface

Substituting the data of the asteroid:

M=3.2\cdot 10^3 kg is the mass

R=30 km = 30000 m is the radius of the asteroid

h=3 km = 3000 m is the distance from the surface

We find

g=\frac{(6.67\cdot 10^{-11})(3.2\cdot 10^3)}{(30000+3000)^2}=1.96\cdot 10^{-16} m/s^2

b) i)  5.53\cdot 10^9 s

The acceleration of the astronaut popped out at 3 km from the surface is exactly that calculated at part a):

g=1.96\cdot 10^{-16} m/s^2

So, since its motion is at constant acceleration, we can find the time he takes to reach the surface using suvat equations:

s=ut+\frac{1}{2}gt^2

where

s = 3 km = 3000 m is his displacement to reach the surface

u = 0 is his initial velocity

t is the time

Solving for t,

t=\sqrt{\frac{2s}{g}}=\sqrt{\frac{2(3000)}{1.96\cdot 10^{-16} m/s^2}}=5.53\cdot 10^9 s

b) ii) 1.08\cdot 10^{-6} m/s

Again, we can use another suvat equation:

v=u+gt

where

v is the final velocity

u is the initial velocity

g is the acceleration of gravity

t is the time

Since we have

u = 0

t=5.53\cdot 10^9 s

g=1.96\cdot 10^{-16} m/s^2

The velocity of the astronaut at the surface will be

v=0+(1.96\cdot 10^{-16} m/s^2)(5.53\cdot 10^9)=1.08\cdot 10^{-6} m/s

b) iii) 175 years

The duration of one year here is

T=3.16\cdot 10^7 s

And the time it takes for the astronaut to reach the surface of the asteroid is

t=5.53\cdot 10^9 s

Therefore, to find the number of years, we just need to divide the total time by the duration of one year:

n=\frac{t}{T}=\frac{5.53\cdot 10^9 s}{3.16\cdot 10^7}=175

So, the astronaut will take 175 years to reach the surface.

You might be interested in
According to Newton’s first law of motion, when will an object at rest begin to move?
soldi70 [24.7K]

2. When an unbalanced force acts upon it

Think of a glass of milk resting on a table. The glass weighs a certain amount more due to the load it carries. It would be unaffected until and unbalanced force (such as a hand) carelessly knocks it over spilling the contents.

Hope this helps :)

6 0
3 years ago
A thermometer is placed in water in order to measure the water’s temperature. What would cause the liquid in the thermometer to
katovenus [111]
The correct answer should be c.The kinetic energy of the water molecules decreases.

If the temperature drops that means that the molecules are coming together. If the temperature rises then it means that the molecules are spreading. If the kinetic energy falls down that means that they are slower which means that they are cooler.
4 0
3 years ago
Read 2 more answers
Which observation would be evidence that heat was transferred by radiation?
oksian1 [2.3K]
I think the answer is D
8 0
3 years ago
pulling one of the balls away from the other. To pull a ball away, click on the ball and drag it. What happens to the force arro
Soloha48 [4]
Gravity.: Gravity is the force that acts at a right angle to the path of an orbiting object.
7 0
3 years ago
Read 2 more answers
Four distinguishable particles move freely in a room divided into octants (there are no actual partitions). Let the basic states
mafiozo [28]

Answer:

Explanation:

Since the door that leads to the room is opened, this gives room for particles to move into the next identical room and divided into octants. Now the amount of space that can be occupied becomes double, the number of basic states has increased by 404916

8 0
3 years ago
Other questions:
  • A circle in the xy-plane has diameter 9.8 cm. A magnetic field of strength 3.4 T is oriented at an angle of 23° to the z-axis, a
    15·1 answer
  • The object falls faster at the pole then the equator why​
    5·1 answer
  • What group tend to take on electrons in order to become stable
    13·1 answer
  • Which of the following is true about a family psychologist?
    8·2 answers
  • What is apparent magnitude and what can affect it?
    14·1 answer
  • The sun generates both mechanical and electromagnetic waves. Which statement about those waves is true?
    14·1 answer
  • The "zone of avoidance" a) Accounts for the absence of any planet between the orbits of Mars and Jupiter Prevents collisions bet
    5·1 answer
  • A clarinet behaves like a tube closed at one end. If its length is 1.0 m, and the velocity of sound is 344 m/s, what is its fund
    9·1 answer
  • Block A is also connected to a horizontally-mounted spring with a spring constant of 281 J/m2. What is the angular frequency (in
    11·1 answer
  • A couch is pushed with a force of 82 N and moves a distance of 6 m across the floor. How much work was done in moving the couch?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!