1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dalvyx [7]
3 years ago
10

A) Find the gravitational field strength of an asteroid with the mass of 3.2 * 10^3 kg and an average radius of 30 km when at a

distance of 3 km from its surface
b) if an astronaut popped out of a worm hole (at rest) at 3 km from the asteroid
i) how long would it take him to fall to the asteroid’s surface?
ii) how fast would he be traveling when he hit it? (Assume acceleration stays constant)
iii) if a year is 3.16 * 10^7 s, how many years would it take for the astronaut to reach the asteroid?
Please show work, thanks
Physics
1 answer:
MrMuchimi3 years ago
8 0

a) 1.96\cdot 10^{-16} m/s^2

The gravitational field strength near the surface of the asteroid is given by:

g=\frac{GM}{(R+h)^2}

where

G is the gravitational constant

M is the mass of the asteroid

R the radius of the asteroid

h is the distance from the surface

Substituting the data of the asteroid:

M=3.2\cdot 10^3 kg is the mass

R=30 km = 30000 m is the radius of the asteroid

h=3 km = 3000 m is the distance from the surface

We find

g=\frac{(6.67\cdot 10^{-11})(3.2\cdot 10^3)}{(30000+3000)^2}=1.96\cdot 10^{-16} m/s^2

b) i)  5.53\cdot 10^9 s

The acceleration of the astronaut popped out at 3 km from the surface is exactly that calculated at part a):

g=1.96\cdot 10^{-16} m/s^2

So, since its motion is at constant acceleration, we can find the time he takes to reach the surface using suvat equations:

s=ut+\frac{1}{2}gt^2

where

s = 3 km = 3000 m is his displacement to reach the surface

u = 0 is his initial velocity

t is the time

Solving for t,

t=\sqrt{\frac{2s}{g}}=\sqrt{\frac{2(3000)}{1.96\cdot 10^{-16} m/s^2}}=5.53\cdot 10^9 s

b) ii) 1.08\cdot 10^{-6} m/s

Again, we can use another suvat equation:

v=u+gt

where

v is the final velocity

u is the initial velocity

g is the acceleration of gravity

t is the time

Since we have

u = 0

t=5.53\cdot 10^9 s

g=1.96\cdot 10^{-16} m/s^2

The velocity of the astronaut at the surface will be

v=0+(1.96\cdot 10^{-16} m/s^2)(5.53\cdot 10^9)=1.08\cdot 10^{-6} m/s

b) iii) 175 years

The duration of one year here is

T=3.16\cdot 10^7 s

And the time it takes for the astronaut to reach the surface of the asteroid is

t=5.53\cdot 10^9 s

Therefore, to find the number of years, we just need to divide the total time by the duration of one year:

n=\frac{t}{T}=\frac{5.53\cdot 10^9 s}{3.16\cdot 10^7}=175

So, the astronaut will take 175 years to reach the surface.

You might be interested in
Compressional forces within the crust can produce:
brilliants [131]
<span>tension, compression, and shearing and can i get brainliest plz</span>
4 0
3 years ago
Will a seismic wave traveling through a solid go slower or faster than a seismic wave traveling through a liquid? Why?
Snezhnost [94]
You can't answer this question because you aren't giving the specific type of seismic waves. There is an s-wave a p-wave and an l-wave. Those are the basic waves. An S-wave cannot travel through a liquid at all. So, obviously it travels slower than any other seismic wave. 


<span>It would travel faster because their speed depends on the density and composition of material that they pass through.</span>
3 0
3 years ago
A car accelerates from zero to a speed of 110
Verizon [17]

The car's rate of  acceleration : a = 2.04 m/s²

<h3>Further explanation</h3>

Given

speed = 110 km/hr

time = 15 s

Required

The acceleration

Solution

110 km/hr⇒30.56 m/s

Acceleration is the change in velocity over time

a = Δv : Δt

Input the value :

a = 30.56 m/s : 15 s

a = 2.04 m/s²

3 0
3 years ago
What provides most of the force to allow the runners to move?
kobusy [5.1K]

Answer:

When you are running the most important force that you should understand is friction. Friction is a force that opposes movement between two objects, but for runners friction makes you faster. Friction gives you a better and more efficient way to use your energy into speed.

4 0
2 years ago
What mass of ice (in g) can be melted if 27.2 kJ of thermal energy are added at the freezing point? Use molar mass = 18.02 g/mol
san4es73 [151]

Answer : The mass of ice melted can be, 3.98 grams.

Explanation :

First we have to calculate the moles of ice.

Q=\frac{\Delta H}{n}

where,

Q = energy absorbed = 27.2 kJ

\Delta H = enthalpy of fusion of ice = 6.01 kJ/mol

n = moles = ?

Now put all the given values in the above expression, we get:

27.2kJ=\frac{6.01kJ/mol}{n}

n=0.221mol

Now we have to calculate the mass of ice.

\text{Mass of ice}=\text{Moles of ice}\times \text{Molar mass of ice}

Molar mass of ice = 18.02 g/mol

\text{Mass of ice}=0.221mol\times 18.02g/mol=3.98g

Thus, the mass of ice melted can be, 3.98 grams.

3 0
3 years ago
Other questions:
  • What did the diver most likely use as a reference point to describe the position of the squid?
    12·1 answer
  • What was the significance of the double-slit experiment? A. It showed that light had wave properties. B. It first demonstrated t
    8·1 answer
  • 3. Work and Conservation of Energy:Calculate the height of a building if 20,000 J energy is required to 200 kg of water from a w
    7·1 answer
  • A water-balloon launcher with mass 5 kg fires a 1 kg balloon with a velocity of
    13·1 answer
  • Describe the medium that electromagnetic waves use to travel
    14·1 answer
  • The density of a fish tank is 0.2fish over feet cubed. There are 8 fish in the tank. What is the volume of the tank?
    6·1 answer
  • Drag the tiles to the correct boxes to complete the pairs. Match each form of energy to its description. motion energy thermal e
    10·2 answers
  • What molecule(s) does carbon, hydrogen, and oxygen come from?
    8·1 answer
  • Pls reply... plss!! help me​
    8·1 answer
  • What happens if you drop a chicken wing from the top of the Eiffel Tower
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!