1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dalvyx [7]
3 years ago
10

A) Find the gravitational field strength of an asteroid with the mass of 3.2 * 10^3 kg and an average radius of 30 km when at a

distance of 3 km from its surface
b) if an astronaut popped out of a worm hole (at rest) at 3 km from the asteroid
i) how long would it take him to fall to the asteroid’s surface?
ii) how fast would he be traveling when he hit it? (Assume acceleration stays constant)
iii) if a year is 3.16 * 10^7 s, how many years would it take for the astronaut to reach the asteroid?
Please show work, thanks
Physics
1 answer:
MrMuchimi3 years ago
8 0

a) 1.96\cdot 10^{-16} m/s^2

The gravitational field strength near the surface of the asteroid is given by:

g=\frac{GM}{(R+h)^2}

where

G is the gravitational constant

M is the mass of the asteroid

R the radius of the asteroid

h is the distance from the surface

Substituting the data of the asteroid:

M=3.2\cdot 10^3 kg is the mass

R=30 km = 30000 m is the radius of the asteroid

h=3 km = 3000 m is the distance from the surface

We find

g=\frac{(6.67\cdot 10^{-11})(3.2\cdot 10^3)}{(30000+3000)^2}=1.96\cdot 10^{-16} m/s^2

b) i)  5.53\cdot 10^9 s

The acceleration of the astronaut popped out at 3 km from the surface is exactly that calculated at part a):

g=1.96\cdot 10^{-16} m/s^2

So, since its motion is at constant acceleration, we can find the time he takes to reach the surface using suvat equations:

s=ut+\frac{1}{2}gt^2

where

s = 3 km = 3000 m is his displacement to reach the surface

u = 0 is his initial velocity

t is the time

Solving for t,

t=\sqrt{\frac{2s}{g}}=\sqrt{\frac{2(3000)}{1.96\cdot 10^{-16} m/s^2}}=5.53\cdot 10^9 s

b) ii) 1.08\cdot 10^{-6} m/s

Again, we can use another suvat equation:

v=u+gt

where

v is the final velocity

u is the initial velocity

g is the acceleration of gravity

t is the time

Since we have

u = 0

t=5.53\cdot 10^9 s

g=1.96\cdot 10^{-16} m/s^2

The velocity of the astronaut at the surface will be

v=0+(1.96\cdot 10^{-16} m/s^2)(5.53\cdot 10^9)=1.08\cdot 10^{-6} m/s

b) iii) 175 years

The duration of one year here is

T=3.16\cdot 10^7 s

And the time it takes for the astronaut to reach the surface of the asteroid is

t=5.53\cdot 10^9 s

Therefore, to find the number of years, we just need to divide the total time by the duration of one year:

n=\frac{t}{T}=\frac{5.53\cdot 10^9 s}{3.16\cdot 10^7}=175

So, the astronaut will take 175 years to reach the surface.

You might be interested in
A set of statements that belong together as a group and contribute to the function definition is known as a(n) ________.
dsp73
Block. hope this helps.
5 0
2 years ago
When heat is added to an object, what is happening to the item at the atomic level? (Check all that apply)
3241004551 [841]

Answer:

a

Explanation:

heat is energy, energy cannot be made or destroyed but transferred

6 0
3 years ago
Read 2 more answers
He user of a machine applies force to the machine over the _____ distance.
gtnhenbr [62]
The blank distance is your answer

5 0
2 years ago
Energy that is transferred from a warmer object to a cooler object is called
alukav5142 [94]

Answer:

Heat

Explanation:

Energy that is transferred from a warmer object to a cooler object is called heat.

3 0
2 years ago
Read 2 more answers
An 8.0 cm object is 40.0 cm from a concave mirror that has a focal length of 10.0 cm. Its image is 16.0 cm in front of the mirro
svet-max [94.6K]
 We can rearrange the mirror equation before plugging our values in. 
1/p = 1/f - 1/q. 
1/p = 1/10cm - 1/40cm
1/p = 4/40cm - 1/40cm = 3/40cm
40cm=3p  <-- cross multiplication
13.33cm = p

Now that we have the value of p, we can plug it into the magnification equation.

M=-16/13.33=1.2
1.2=h'/8cm
9.6=h'

So the height of the image produced by the mirror is 9.6cm.
6 0
2 years ago
Other questions:
  • How long does it take electrons to get from the car battery to the starting motor? Assume the current is 143 A and the electrons
    13·1 answer
  • The law of harmonies is referred to as _____.
    7·1 answer
  • What is the change in the cell voltage when the ion concentrations in the cathode half-cell are increased by a factor of 10?
    7·2 answers
  • An unfortunate bug splatters against the windshield of a moving car. Compared to the force of the car on the bug, the force of t
    11·1 answer
  • Which best describes how energy transferred from an electron in the solar wind compares with energy absorbed by an electron in t
    5·1 answer
  • Which of the following statements about the
    12·1 answer
  • Dentify the following terms associated with the water cycle.
    13·1 answer
  • Please help!!! Will give u Brainliest
    13·1 answer
  • To prevent dehydration when exercising on hot and humid days it is vital to:
    11·2 answers
  • According to Newton’s 2nd law of motion: objects at a rest will remain in rest unless acted upon
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!