Answer:
Light's angle of refraction = 37.1° (Approx.)
Explanation:
Given:
Index of refraction = 1.02
Base of refraction = 1
Angle of incidence = 38°
Find:
Light's angle of refraction
Computation:
Using Snell's law;
Sin[Angle of incidence] / Sin[Light's angle of refraction] = Index of refraction / Base of refraction
Sin38 / Light's angle of refraction = 1.02 / 1
Sin[Light's angle of refraction] = Sin 38 / 1.02
Sin[Light's angle of refraction] = [0.6156] / 1.02
Sin[Light's angle of refraction] = 0.6035
Light's angle of refraction = 37.1° (Approx.)
Answer:
Q = 47.06 degrees
Explanation:
Given:
- The transmitted intensity I = 0.464 I_o
- Incident Intensity I = I_o
Find:
What angle should the principle axis make with respect to the incident polarization
Solution:
- The relation of transmitted Intensity I to to the incident intensity I_o on a plane paper with its principle axis is given by:
I = I_o * cos^2 (Q)
- Where Q is the angle between the Incident polarized Light and its angle with the principle axis. Hence, Using the relation given above:
Q = cos ^-1 (sqrt (I / I_o))
- Plug the values in:
Q = cos^-1 ( sqrt (0.464))
Q = cos^-1 (0.6811754546)
Q = 47.06 degrees
Answer:
128.21 m
Explanation:
The following data were obtained from the question:
Initial temperature (θ₁) = 4 °C
Final temperature (θ₂) = 43 °C
Change in length (ΔL) = 8.5 cm
Coefficient of linear expansion (α) = 17×10¯⁶ K¯¹)
Original length (L₁) =.?
The original length can be obtained as follow:
α = ΔL / L₁(θ₂ – θ₁)
17×10¯⁶ = 8.5 / L₁(43 – 4)
17×10¯⁶ = 8.5 / L₁(39)
17×10¯⁶ = 8.5 / 39L₁
Cross multiply
17×10¯⁶ × 39L₁ = 8.5
6.63×10¯⁴ L₁ = 8.5
Divide both side by 6.63×10¯⁴
L₁ = 8.5 / 6.63×10¯⁴
L₁ = 12820.51 cm
Finally, we shall convert 12820.51 cm to metre (m). This can be obtained as follow:
100 cm = 1 m
Therefore,
12820.51 cm = 12820.51 cm × 1 m / 100 cm
12820.51 cm = 128.21 m
Thus, the original length of the wire is 128.21 m
<span>The answer is: ultraviolet
The energy (E) of a photon is directly proportional to its frequency f, by Planck's
formula: E = hf, where h is Planck's constant (6.625 * 10**-34 joule-second).
The frequency is inversely proportional to the wavelength w by: f = c/w, where
c is the speed of light, 3.0 * 10**8 meters per second.
Combine these formulas and we see that the energy is inversely proportional to
the wavelength by: E = hc/w
If the energy is inversely proportional to the wavelength, a photon with twice the
energy has half the wavelength of our 442-nm. photon in this example.
So its wavelength is 221 nm. which is in the ultraviolet range.</span>
A. because none of the other answers make sense, there is no air in space, acceleration would change the velocity, force would imply something moved it which is highly unlikely (unless we are talking about starwars), and inertia is a tendency to do nothing or to remain unchanged or a property of matter by which it continues in its existing state of rest or uniform motion in a straight line, unless that state is changed by an external force.