Answer:
a) 1.082 × 10⁻¹⁹C ( e = 1.6 × 10⁻¹⁹C)
b) 3.466 × 10¹¹ N/C
Explanation:
a)
p(r) = -A exp ( - 2r/a₀)
Q = ₀∫^∞ ₀∫^π ₀∫^2xπ p(r)dV = -A ₀∫^∞ ₀∫^π ₀∫^2π exp ( - 2r/a₀)r² sinθdrdθd∅
Q = -4πA ₀∫^∞ exp ( - 2r/a₀)r²dr = -e
now using integration by parts;
A = e / πa₀³
p(r) = - (e / πa₀³) exp (-2r/a₀)
Now Net charge inside a sphere of radius a₀ i.e Qnet is;
= e - (e / πa₀³) ₀∫^a₀ ₀∫^π ₀∫^2π r² exp (-2r/a₀)dr
= e - e + 5e exp (-2) = 1.082 × 10⁻¹⁹C ( e = 1.6 × 10⁻¹⁹C)
b)
Using Gauss's law,
E × 4πa₀ ² = Qnet / ∈₀
E = 4πa₀ ² × Qnet × 1/a₀²
E = 3.466 × 10¹¹ N/C
Answer:
hope this will help you
have a great day
Explanation:
please mark me as the brainliest
Answer:
v_f = 24.3 m / s
Explanation:
A) In this exercise there is no friction so energy is conserved.
Starting point. On the roof of the building
Em₀ = K + U = ½ m v₀² + m g y₀
Final point. On the floor
Em_f = K = ½ m v_f²
Emo = Em_g
½ m v₀² + m g y₀ = ½ m v_f²
v_f² = v₀² + 2 g y₀
let's calculate
v_f = √(10² + 2 9.8 25)
v_f = 24.3 m / s
The loudness of sound refer to how loud or soft a sound seems to a listener