Answer:
B. Her curiosity got the best of her
Explanation:
Pandora gave in to her curiosity .
hmmmmmmmmmmmmmmmmm ask someone else sorry if im not helping
Answer:
B = 7.6 T direction of + x
Explanation:
For the proton beam to continue in the same direction the electric and magnetic forces must be equal
= 0
= F_{e}
Fm = q E
The electric force is in the direction of the electric field because it is the charge of the positive proton, the electric force goes in the direction of –y, therefore, the magnetic force cancels this force must go in the direction of + y
The magnetic force is
F_{m} = q v x B = q v B sin θ
θ = 90
B = q E / q v
B = E / v
B = 800/105
B = 7.6 T
To find the direction of the magnetic field we use the right hand rule, the thumb goes in the direction of the proton velocity, the fingers extended in the direction of the magnetic field and the palm is the direction of force, for a positive charge.
Thumb goes in the direction of the + z axis
Palm in the direction of +y
Fingers point in the direction of + x
water is not found in the periodic table.
water has a lot of empty space.
I think that's it I know those to are true.
Given
Weight of the block A, Wa = 20 lb, weight of block B Wb = 50 lb. Applied
force to block A, P = 6lb, coefficient of static friction µs = 0.4, coefficient
of kinetic friction µk = 0.3. If a force P
is applied to the body, no relative motion will take place until the applied
force is equal to the force of friction Ff, which is acting opposite to the
direction of motion. Magnitude of static force of friction between block A and
block B, Fs = µsN, where N is
reaction force acting on block A. Now, resolve the forces Fx = max. P = (mA +
mB)a,
6 = (20 / 32.2 + 50 / 32.2)a
2.173a = 6
A = 2.76 ft/s^2
To check slipping occurs between block A and block B, consider block A:
P – Ff = mAaA
6 – Ff = 1.71
Ff = 4.29 lb
And also,
N = wA. We know static friction,
Fs = µsN
Fs = 0.4 x 20
Fs = 8lb
Frictional force is less than static friction. Ff < Fs
<span>Therefors, acceleration of block A, aA = 2.76 ft/s^2, acceleration of
block B aB = 2.76 ft/s^2</span>