Conductivity, malleability, and high melting points. Hope this helps :)
1.1214 mL will a 0.205-mole sample of He occupy at 3.00 atm and 200 K.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Using equation PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 3.00 atm
V= ?
n=0.205 mole
R= 
T=200 K
Putting value in the given equation:


V= 1.1214 mL
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
<h2>
Answer:</h2><h2>
The percentage of the family’s total annual electricity that is used to run the two air conditioners for the three summer months = 19.4 %</h2>
Explanation:
Average electricity consumed per month = 900 kWh
The family cools their house for three months during the summer with two window-unit air conditioners
The power consumed by one window-unit air conditioners = 350 kWh
The power consumed by two window-unit air conditioners = 350(2) = 700 kWh
Power consumed for two air conditioners for the three summer months = 700 (3) = 2100 kWh
Total power consumed for 1 year = 900 (12) = 10800kWh
The percentage of the family’s total annual electricity that is used to run the two air conditioners for the three summer months =
= 19.4 %
Answer:
placing the reactants on a hot plate
Explanation:
If the temperature goes up, the reaction rate will increase. Because the particle will move faster and makes the kinetic energy larger.