Answer:
Rate = k . [B]² . [C]
Explanation:
The dependence of the reaction rate on the concentration of the reactants is given by the reaction order of each one, as shown in the rate equation.
![Rate=k.[A]^{x} .[B]^{y} .[C]^{z}](https://tex.z-dn.net/?f=Rate%3Dk.%5BA%5D%5E%7Bx%7D%20.%5BB%5D%5E%7By%7D%20.%5BC%5D%5E%7Bz%7D)
where,
k is the rate constant
x, y, z are the reaction orders.
- <em>The rate of reaction is not affected by changing the concentration of species A.</em> This means that the reaction order for A is x = 0 since when its concentration changes, the rate stays the same.
- <em>Leaving all other factors identical, doubling the concentration of species B increases the rate by a factor of 4.</em> This means that the reaction order for B is y = 2, so when the concentration is doubled, the new rate is 2² = 4 times the initial rate.
- The rate of the reaction is linearly dependent on the concentration of C. This means that the reaction order for C is z = 1, that is, a linear dependence.
All in all, the rate equation is:
Rate = k . [B]² . [C]
Answer:
well because with the velocity of the two, using the second law, it can slow the velocity before there is a casualty.
Explanation:
A Beta particles is emitted when an atom of 85Kr spontaneously decays.
.....i don't understand the question sorry
Answer is: <span>the objects potential energy is 24500 J.
</span>m(object) = 50 kg.
h(object) = 50 m.
g = 9,8 m/s².
E(object) = m·g·h.
E(object) = 50 kg · 9,8 m/s² · 50 m.
E(object) = 24500 N·m = 24500 J = 24,5 kJ.
g - <span>the acceleration of free fall.
mg - </span><span>weight of the object.</span>