1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tester [92]
3 years ago
8

While playing a game of catch on the quadrangle, you throw a ball at an initial velocity of 17.6 m/s (approximately 39.4 mi/hr),

at an angle of 50 degrees above horizontal. The ball flies past your friend, and lands on the ground. You let the ball go at a height of 2 m above the ground. Define upward as the positive y direction, and the horizontal direction of the ball's travel as the positive x direction. You can assume that air resistance and any effects of the ball spinning are so small that they can be ignored; this means that gravity is the only force causing an acceleration.
Required:
a. What is the y-component of velocity just before the ball hits the ground?
b. For how much time is the ball in the air?
c. How far horizontally does the ball travel before it hits the ground?
d. What is the magnitude of the velocity of the ball just before it hits the ground?
e. What is the angle of the total velocity of the ball just before it hits the ground?
Engineering
2 answers:
Reil [10]3 years ago
6 0

Answer:

A

Explanation:

MAXImum [283]3 years ago
3 0

Answer:

a) The y-component of velocity just before the ball hits the ground is -14.860 meters per second.

b) The ball is in the air during approximately 2.890 seconds.

c) The horizontal distance covered by the ball is 32.695 meters.

d) The magnitude of the velocity of the ball just before it hits the ground is approximately 18.676 meters per second.

e) The angle of the total velocity of the ball just before it hits the ground is approximately 52.717º below the horizontal.

Explanation:

a) The ball experiments a parabolic motion, which is a combination of horizontal motion at constant velocity and vertical motion at constant acceleration. First, we calculate the time taken by the ball to hit the ground:

y = y_{o} + (v_{o}\cdot \sin \theta) \cdot t+\frac{1}{2}\cdot g\cdot t^{2} (1)

Where:

y_{o}, y - Initial and final vertical position, measured in meters.

v_{o} - Initial speed, measured in meters per second.

\theta - Launch angle, measured in sexagesimal degrees.

g - Gravitational acceleration, measured in meters per square second.

t - Time, measured in seconds.

If we know that y_{o} = 2\,m, y = 0\,m, v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and g = -9.807\,\frac{m}{s^{2}}, then the time taken by the ball is:

-4.904\cdot t^{2}+13.482\cdot t +2 = 0 (2)

This second order polynomial can be solved by Quadratic Formula:

t_{1} \approx 2.890\,s and t_{2} \approx -0.141\,s

Only the first root offers a solution that is physically reasonable. That is, t \approx 2.890\,s.

The vertical velocity of the ball is calculated by this expression:

v_{y} = v_{o}\cdot \sin \theta +g\cdot t (3)

Where:

v_{o,y}, v_{y} - Initial and final vertical velocity, measured in meters per second.

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ}, g = -9.807\,\frac{m}{s^{2}} and t \approx 2.890\,s, then the final vertical velocity is:

v_{y} = -14.860\,\frac{m}{s}

The y-component of velocity just before the ball hits the ground is -14.860 meters per second.

b) From a) we understand that ball is in the air during approximately 2.890 seconds.

c) The horizontal distance covered by the ball (x) is determined by the following expression:

x = (v_{o}\cdot \cos \theta)\cdot t (4)

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and t \approx 2.890\,s, then the distance covered by the ball is:

x = 32.695\,m

The horizontal distance covered by the ball is 32.695 meters.

d) The magnitude of the velocity of the ball just before hitting the ground (v), measured in meters per second, is determined by the following Pythagorean identity:

v = \sqrt{(v_{o}\cdot \cos \theta )^{2}+v_{y}^{2}} (5)

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and v_{y} = -14.860\,\frac{m}{s}, then the magnitude of the velocity of the ball is:

v \approx 18.676\,\frac{m}{s}.

The magnitude of the velocity of the ball just before it hits the ground is approximately 18.676 meters per second.

e) The angle of the total velocity of the ball just before it hits the ground is defined by the following trigonometric relationship:

\tan \theta = \frac{v_{y}}{v_{o}\cdot \cos \theta_{o}}

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta_{o} = 50^{\circ} and v_{y} = -14.860\,\frac{m}{s}, the angle of the total velocity of the ball just before hitting the ground is:

\theta \approx -52.717^{\circ}

The angle of the total velocity of the ball just before it hits the ground is approximately 52.717º below the horizontal.

You might be interested in
#5 Air undergoes an adiabatic compression in a piston-cylinder assembly from P1= 1 atm and Ti=70 oF to P2= 5 atm. Employing idea
otez555 [7]

Answer:

The work transfer per unit mass is approximately 149.89 kJ

The heat transfer for an adiabatic process = 0

Explanation:

The given information are;

P₁ = 1 atm

T₁ = 70°F = 294.2611 F

P₂ = 5 atm

γ = 1.5

Therefore, we have for adiabatic system under compression

T_{2} = T_{1}\cdot \left (\dfrac{P_{2}}{P_{1}}  \right )^{\dfrac{\gamma -1}{\gamma }}

Therefore, we have;

T_{2} = 294.2611 \times \left (\dfrac{5}{1}  \right )^{\dfrac{1.5 -1}{1.5 }} \approx 503.179 \ K

The p·dV work is given as follows;

p \cdot dV = m \cdot c_v \cdot (T_2 - T_1)

Therefore, we have;

Taking air as a diatomic gas, we have;

C_v = \dfrac{5\times R}{2} = \dfrac{5\times 8.314}{2} = 20.785 \ J/(mol \cdot K)

The molar mass of air = 28.97 g/mol

Therefore, we have

c_v = \dfrac{C_v}{Molar \ mass} = \dfrac{20.785}{28.97} \approx 0.7175 \ kJ/(kg \cdot K)

The work done per unit mass of gas is therefore;

p \cdot dV =W =   1 \times 0.7175 \times (503.179 - 294.2611) \approx 149.89 \ kJ

The work transfer per unit mass ≈ 149.89 kJ

The heat transfer for an adiabatic process = 0.

8 0
3 years ago
Explain the differences between planned and predictive maintenance.
sveticcg [70]

Answer:

Planned maintenance refers to any scheduled activity carried out to check a machine is working ok and diagnose procedures to fix it if need it. On the other hand, predictive mainteance is all the techniques which help to define if a machine requires or not maintenance activities so far.

Explanation:

Planned maintenance is based on preventive routines to ensure a machine is working in acceptable conditions and at the same time prevent them to change to risky values performing acticities like parts replacement, cleaning,  etc. The key of this maintenance is schedule, that is to say, is a maintenance that has to be carried out constantly each certain time. Predictive maintenance is different because it is used to define if a machie needs any kind of inspection or if, on the contrary, the machine can continue operating without any intervention. The good point about predictive maintenance is the capability of telling when a maintenance is required and when is no necessarily required which is ideal to save costs.

7 0
3 years ago
Which of the following statements about glycogen metabolism is FALSE?
Ratling [72]

Answer:

Glycogen is the primary energy source for muscle and liver cells.

Explanation:

Glycogen is a readily mobilized storage form of glucose. It is a very large, branched polymer of glucose residues that can be broken down to yield glucose molecules when energy is needed. Most of the glucose residues in glycogen are linked by α-1,4-glycosidic bonds. Branches at about every tenth residue are created by α-1,6-glycosidic bonds.

Glycogen is not as reduced as fatty acids are and consequently not as energy rich. Why do animals store any energy as glycogen? Why not convert all excess fuel into fatty acids? Glycogen is an important fuel reserve for several reasons. The controlled breakdown of glycogen and release of glucose increase the amount of glucose that is available between meals. Hence, glycogen serves as a buffer to maintain blood-glucose levels. Glycogen's role in maintaining blood-glucose levels is especially important because glucose is virtually the only fuel used by the brain, except during prolonged starvation. Moreover, the glucose from glycogen is readily mobilized and is therefore a good source of energy for sudden, strenuous activity. Unlike fatty acids, the released glucose can provide energy in the absence of oxygen and can thus supply energy for anaerobic activity.

3 0
3 years ago
Sea A una matriz 3x3 con la propiedad de que la transformada lineal x → Ax mapea R³ sobre R³.
skelet666 [1.2K]

Answer:

ax

Explanation:

7 0
3 years ago
AC motor characteristics require the applied voltage to be proportionally adjusted by an AC drive whenever the frequency is chan
Margarita [4]
The answer is false
6 0
3 years ago
Read 2 more answers
Other questions:
  • Consider a circular grill whose diameter is 0.3 m. The bottom of the grill is covered with hot coal bricks at 961 K, while the w
    10·1 answer
  • Memory Question!
    7·1 answer
  • The nameplate on a 70 kVA transformer shows a primary voltage of 480 volts and a secondary voltage of 115 volts. We wish to dete
    10·1 answer
  • A furnace wall consisting of 0.25 m of fire clay brick, 0.20 m of kaolin, and a 0.10‐m outer layer of masonry brick is exposed t
    8·1 answer
  • In order to break even, your minimum selling price must be __________ your variable costs.
    10·1 answer
  • List two common units of measurement to describe height
    5·2 answers
  • Lance is the sitting judge in the local family court. What education might have been
    10·1 answer
  • A) If a given directional antenna can receive 15 times the power of an isotropic antenna, what is
    11·1 answer
  • Why is personal development necessary based activity success life and career​
    11·1 answer
  • When you approach an uncontrolled intersection, you should treat it as though which sign is present?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!