1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mezya [45]
3 years ago
13

The air velocity in the duct of a heating system is to be measured by a Pitot-static probe inserted into the duct parallel to th

e flow. The differential height between the water columns connected to the two outlets of the probe is 0.126 m.Take the density of water to be 1000 kg/m3. The gas constant of air is R = 0.287 kPa-m3/kg-K.The air temperature and pressure in the duct are 352 K and 98 kPa, respectively.

Engineering
1 answer:
Ilia_Sergeevich [38]3 years ago
8 0

Answer:

Flow velocity

50.48m/s

Pressure change at probe tip

1236.06Pa

Explanation:

Question is incomplete

The air velocity in the duct of a heating system is to be measured by a Pitot-static probe inserted into the duct parallel to the flow. If the differential height between the water columns connected to the two outlets of the probe is 0.126m, determine (a) the flow velocity and (b) the pressure rise at the tip of the probe. The air temperature and pressure in the duct are 352k and 98 kPa, respectively

solution

In this question, we are asked to calculate the flow velocity and the pressure rise at the tip of probe

please check attachment for complete solution and step by step explanation

You might be interested in
System Integration summary
kenny6666 [7]

Answer:

System integration can be defined as the progressive linking and testing of system components to merge their functional and technical characteristics into a comprehensive interoperable system.

Explanation:

....

6 0
3 years ago
Problem 1: A catchment has the following Horton’s infiltration parameters: f0=280 mm/hr, fc=25 mm/hr and k = 2.5 hr-1 . For the
harkovskaia [24]

Answer:

Ponding will occur in 40mins

Explanation:

We say that the infiltration rate is the velocity or speed at which water enters into the soil. This often times is measured by the depth (in mm) of the water layer that can enter the soil in one hour. An infiltration rate of 15 mm/hour means that a water layer of 15 mm on the soil surface, will take one hour to infiltrate.

Consider checking attachment for the step by step solution.

6 0
3 years ago
A plane wall of thickness 0.1 m and thermal conductivity 25 W/m·K having uniform volumetric heat generation of 0.3 MW/m3 is insu
Contact [7]

Answer:

T = 167 ° C

Explanation:

To solve the question we have the following known variables

Type of surface = plane wall ,

Thermal conductivity k = 25.0 W/m·K,  

Thickness L = 0.1 m,

Heat generation rate q' = 0.300 MW/m³,

Heat transfer coefficient hc = 400 W/m² ·K,

Ambient temperature T∞ = 32.0 °C

We are to determine the maximum temperature in the wall

Assumptions for the calculation are as follows

  • Negligible heat loss through the insulation
  • Steady state system
  • One dimensional conduction across the wall

Therefore by the one dimensional conduction equation we have

k\frac{d^{2}T }{dx^{2} } +q'_{G} = \rho c\frac{dT}{dt}

During steady state

\frac{dT}{dt} = 0 which gives k\frac{d^{2}T }{dx^{2} } +q'_{G} = 0

From which we have \frac{d^{2}T }{dx^{2} }  = -\frac{q'_{G}}{k}

Considering the boundary condition at x =0 where there is no heat loss

 \frac{dT}{dt} = 0 also at the other end of the plane wall we have

-k\frac{dT }{dx } = hc (T - T∞) at point x = L

Integrating the equation we have

\frac{dT }{dx }  = \frac{q'_{G}}{k} x+ C_{1} from which C₁ is evaluated from the first boundary condition thus

0 = \frac{q'_{G}}{k} (0)+ C_{1}  from which C₁ = 0

From the second integration we have

T  = -\frac{q'_{G}}{2k} x^{2} + C_{2}

From which we can solve for C₂ by substituting the T and the first derivative into the second boundary condition s follows

-k\frac{q'_{G}L}{k} = h_{c}( -\frac{q'_{G}L^{2} }{k}  + C_{2}-T∞) → C₂ = q'_{G}L(\frac{1}{h_{c} }+ \frac{L}{2k} } )+T∞

T(x) = \frac{q'_{G}}{2k} x^{2} + q'_{G}L(\frac{1}{h_{c} }+ \frac{L}{2k} } )+T∞ and T(x) = T∞ + \frac{q'_{G}}{2k} (L^{2}+(\frac{2kL}{h_{c} }} )-x^{2} )

∴ Tmax → when x = 0 = T∞ + \frac{q'_{G}}{2k} (L^{2}+(\frac{2kL}{h_{c} }} ))

Substituting the values we get

T = 167 ° C

4 0
3 years ago
A rich industrialist was found murdered in his house. The police arrived at the scene at 11:00 PM. The temperature of the corpse
d1i1m1o1n [39]

Answer:

The dude was killed around 6:30PM

Explanation:

Newton's law of cooling states:

    T = T_m + (T_0-T_m)e^{kt}

where,

T_0 = initial temp

T_m = temp of room

T = temp after t hours

k = how fast the temp is changing

t = time (hours)

T_0 = 31     because the body was initlally 31ºC when the police found it

T_m = 22   because that was the room temp

T = 30  because the body temp drop to 30ºC after 1 hour

t = 1 because that's the time it took for the body temp to drop to 30ºC

k=???   we don't know k so we must solve for this

rearrange the equation to solve for k

T = T_m + (T_0-T_m)e^{kt}

T - T_m= (T_0-T_m)e^{kt}

\frac{T - T_m}{(T_0-T_m)}= e^{kt}

ln(\frac{T - T_m}{T_0-T_m})=kt

\frac{ln(\frac{T - T_m}{T_0-T_m})}{t}=k

plug in the numbers to solve for k

k = \frac{ln(\frac{T - T_m}{T_0-T_m})}{t}

k = \frac{ln(\frac{30 - 22}{31-22})}{1}

k=ln(\frac{8}{9})

Now that we know the value for k, we can find the moment the murder occur. A crucial information that the question left out is the temperature of a human body when they're still alive. A living human body is about 37ºC. We can use that as out initial temperature to solve this problem because we can assume that the freshly killed body will be around 37ºC.

T_0 = 37     because the body was 37ºC right after being killed

T_m = 22   because that was the room temp

T = 31  because the body temp when the police found it

k=ln(\frac{8}{9})   we solved this earlier

t = ???   we don't know how long it took from the time of the murder to when the police found the body

Rearrange the equation to solve for t

T = T_m + (T_0-T_m)e^{kt}

T - T_m= (T_0-T_m)e^{kt}

\frac{T - T_m}{(T_0-T_m)}= e^{kt}

ln(\frac{T - T_m}{T_0-T_m})=kt

\frac{ln(\frac{T - T_m}{T_0-T_m})}{k}=t

plug in the values

t=\frac{ln(\frac{T - T_m}{T_0-T_m})}{k}

t=\frac{ln(\frac{31 - 22}{37-22})}{ln(8/9)}

t=\frac{ln(3/5)}{ln(8/9)}

t=\frac{ln(3/5)}{ln(8/9)}

t ≈ 4.337 hours from the time the body was killed to when the police found it.

The police found the body at 11:00PM so subtract 4.337 from that.

11 - 4.33 = 6.66 ≈ 6:30PM

7 0
3 years ago
What should you release to re-establish vehicle control and tire traction?
MrMuchimi

Answer: The accelerator and the brakes.

6 0
2 years ago
Other questions:
  • Where the velocity is highest in the radial direction? Why?
    9·1 answer
  • Lately, you have noticed some repetitive stress in your wrist. Which sign is most likely the cause of that stress and pain?
    7·1 answer
  • For a fluid with a Prandtl Number of 1000.0, the hydrodynamic layer is thinner than the thermal boundary layers. a) True b) Fals
    5·1 answer
  • What are the characteristic features of stress corrosion cracks?
    15·1 answer
  • Calculate the number of vacancies per cubic meter for some metal, M, at 749°C. The energy for vacancy formation is 0.86 eV/atom,
    5·1 answer
  • Engineers need to be open-ended when dealing with their designs. Why?
    11·1 answer
  • A fan draws air from the atmosphere through a 0.30-mdiameter round duct that has a smoothly rounded entrance. A differential man
    14·1 answer
  • Calculate the radius of a circular orbit for which the period is 1 day​
    13·1 answer
  • Of the core elements of successful safety and health programs, Management Leadership, Worker Participation, and what else relate
    10·2 answers
  • Oil system cleaning products should not use solvents problem
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!