The air velocity in the duct of a heating system is to be measured by a Pitot-static probe inserted into the duct parallel to th
e flow. The differential height between the water columns connected to the two outlets of the probe is 0.126 m.Take the density of water to be 1000 kg/m3. The gas constant of air is R = 0.287 kPa-m3/kg-K.The air temperature and pressure in the duct are 352 K and 98 kPa, respectively.
The air velocity in the duct of a heating system is to be measured by a Pitot-static probe inserted into the duct parallel to the flow. If the differential height between the water columns connected to the two outlets of the probe is 0.126m, determine (a) the flow velocity and (b) the pressure rise at the tip of the probe. The air temperature and pressure in the duct are 352k and 98 kPa, respectively
solution
In this question, we are asked to calculate the flow velocity and the pressure rise at the tip of probe
please check attachment for complete solution and step by step explanation
A horse is harnessed to a cart. If the horse tries to pull the cart, the horse must exert a force on the cart. By Newton's third law the cart must then exert an equal and opposite force on the horse. Newton's second law tells us that acceleration is equal to the net force divided by the mass of the system.