Answer:
Output signal shape: square, from 0.1 to 230 MHz. Output power: -10 dBm (at a load of 50 Ohms).
Explanation:
Answer:
15.24°C
Explanation:
The quality of any heat pump pumping heat from cold to hot place is determined by its coefficient of performance (COP) defined as

Where Q_{in} is heat delivered into the hot place, in this case, the house, and W is the work used to pump heat
You can think of this quantity as similar to heat engine's efficiency
In our case, the COP of our heater is

Where T_{house} = 24°C and T_{out} is temperature outside
To achieve maximum heating, we will have to use the most efficient heat pump, and, according to the second law of thermodynamics, nothing is more efficient that Carnot Heat Pump
Which has COP of:

So we equate the COP of our heater with COP of Carnot heater

Rearrange the equation

Solve this simple quadratic equation, and you should get that the lowest outdoor temperature that could still allow heat to be pumped into your house would be
15.24°C
Answer:
#include <iostream>
using namespace std;
void PrintPopcornTime(int bagOunces) {
if(bagOunces < 3){
cout << "Too small";
cout << endl;
}
else if(bagOunces > 10){
cout << "Too large";
cout << endl;
}
else{
cout << (6 * bagOunces) << " seconds" << endl;
}
}
int main() {
PrintPopcornTime(7);
return 0;
}
Explanation:
Using C++ to write the program. In line 1 we define the header "#include <iostream>" that defines the standard input/output stream objects. In line 2 "using namespace std" gives me the ability to use classes or functions, From lines 5 to 17 we define the function "PrintPopcornTime(), with int parameter bagOunces" Line 19 we can then call the function using 7 as the argument "PrintPopcornTime(7);" to get the expected output.
A persuasive speech is structured like an informative speech. It has an introduction with an attention-getter and a clear thesis statement. It also has a body where the speaker presents their main points and it ends with a conclusion that sums up the main point of the speech.
According to the question of the pulsating brake pedal, both A and B are correct.
What causes brake pulsation?
Brake pulsation is mainly caused by warped rotors/brake discs. Excessive hard braking or quick stops, which can significantly overheat the discs, are the primary causes of deformed rotors. When the discs overheat, the composition of the metal disc material changes, resulting in imperfections in the metal's surface. Hotspots are noticeable irregularities. They appear as discoloured areas of the disc material, which are often bluish or blackish in appearance. The brake pedal is the pedal which you press with your foot to slow or stop a vehicle. When the driver presses the brake pedal, the system automatically delivers the appropriate pressure required to prevent colliding with the vehicle in front.
To learn more about brake pulsation
brainly.com/question/28779956
#SPj4