Answer:
a. 104
b. 102, 104, and 105
Step-by-step explanation:
a. There are 13 data points plotted on the dot line. The median lies between the 6th and 7th data point.
Thus, on the dot line, the 6th and 7th data points both fall on 104.
Therefore, median = 104
b. The dot plot shows the high temperatures that occurred more than one day are:
102, 104, and 105
Answer:

Step-by-step explanation:
Answer:
c
Step-by-step explanation:
Here's how this works:
Get everything together into one fraction by finding the LCD and doing the math. The LCD is sin(x) cos(x). Multiplying that in to each term looks like this:
![[sin(x)cos(x)]\frac{sin(x)}{cos(x)}+[sin(x)cos(x)]\frac{cos(x)}{sin(x)} =?](https://tex.z-dn.net/?f=%5Bsin%28x%29cos%28x%29%5D%5Cfrac%7Bsin%28x%29%7D%7Bcos%28x%29%7D%2B%5Bsin%28x%29cos%28x%29%5D%5Cfrac%7Bcos%28x%29%7D%7Bsin%28x%29%7D%20%3D%3F)
In the first term, the cos(x)'s cancel out, and in the second term the sin(x)'s cancel out, leaving:

Put everything over the common denominator now:

Since
, we will make that substitution:

We could separate that fraction into 2:
×
and 
Therefore, the simplification is
sec(x)csc(x)
Answer:
A= 0,2
B= 0,2
C= 0,4
D=0,2
Step-by-step explanation:
We know that only one team can win, so the sum of each probability of wining is one
P(A)+P(B)+P(C)+P(D)=1
then we Know that the probability of Team A and B are the same, so
P(A)=P(B)
And that the the probability that either team A or team C wins the tournament is 0.6, so P(A)+Pc)= 0,6, then P(C)= 0.6-P(A)
Also, we know that team C is twice as likely to win the tournament as team D, so P(C)= 2 P(D) so P(D) = P(C)/2= (0.6-P(A))/2
Now if we use the first formula:
P(A)+P(B)+P(C)+P(D)=1
P(A)+P(A)+0.6-P(A)+(0.6-P(A))/2=1
0,5 P(A)+0.9=1
0,5 P(A)= 0,1
P(A)= 0,2
P(B)= 0,2
P(C)=0,4
P(D)=0,2