Answer:
0.5cm²
Explanation:
the volume is found by dividing the mass over the density
v=m/d
=7g/14g/cm²
=0.5cm²
i hope this helps
The condition that will increase the entropy in a reaction is heating up the reaction (option B).
<h3>What is entropy?</h3>
Entropy in chemistry is the measure or degree of the disorder or randomness present in a chemical system.
In a chemical reaction, reacting substances called reactants collide with one another to form products.
However, the degree at which the reactants collide with one another is referred to as the entropy of the reaction.
Therefore, the condition that will increase the entropy in a reaction is heating up the reaction i.e. increase in temperature.
Learn more about entropy at: brainly.com/question/13146879
#SPJ1
Answer:
By increasing the pressure, the molar concentration of N2O4 will increase
Explanation:
We have the equation 2NO2 ⇔ N2O4
This equation is reversible and exotherm. By <u>decreasing the temperature</u>, the reaction will produce more energy, so the reaction will move to the right. But a lower temperature also lowers the rate of the process, so, the temperature is set at a compromise value that allows N2O4 to be made at a reasonable rate with an equilibrium concentration that is not too unfavorable
So <u>increasing the temperature</u> will shift the equilibrium to the left. The equilibrium shifts in the direction that consumes energy.
If we d<u>ecrease the concentration of NO2</u>, the equilibrium will shift to the left, resulting in forming more reactants.
To increase the molar concentration of the product N2O4, we have to <u>increase the pressure</u> of the system.
NO2 takes up more space than N2O4, so increasing the pressure would allow the reactant to collide more form more product.
By increasing the pressure, the molar concentration of N2O4 will increase
Answer:
The equilibrium shifts to the left, and the concentration of Ba2+(aq) decreases
Explanation:
Whenever a solution of an ionic substance comes into contact with another ionic compound with which it shares a common ion, the solubility of the ionic substance in solution decreases significantly.
In this case, both BaSO4 and Na2SO4 both possess the SO4^2- anion. Hence SO4^2- anion is the common ion. Given the equilibrium;
BaSO4(s) <—> Ba2+ (aq) + SO4 2- (aq), addition of Na2SO4 will decrease the solubility of BaSO4 due to the presence of a common SO4^2- anion compared to pure water.
This implies that the equilibrium will shift to the left, (more undissoctiated BaSO4) hence decreasing the Ba^2+(aq) concentration.