The planets speed as they orbit the sun
Answer:
See Explanation
Explanation:
Given that;
N/No = (1/2)^t/t1/2
Where;
No = amount of radioactive isotope originally present
N = A mount of radioactive isotope present at time t
t = time taken
t1/2 = half life
N/1000=(1/2)^3/6
N/1000=(1/2)^0.5
N = (1/2)^0.5 * 1000
N= 707 unstable nuclei
Since the value of the initial activity of the radioactive material was not given, the activity of the radioactive material after three months is given by;
Decay constant = 0.693/t1/2 = 0.693/6 months = 0.1155 month^-1
Hence;
A=Aoe^-kt
Where;
A = Activity after a time t
Ao = initial activity
k = decay constant
t = time taken
A = Aoe^-3 *0.1155
A=Aoe^-0.3465
Answer:
See the answer below
Explanation:
Even though plants are rooted in the ground, they still move, exert <u>force,</u> and do<u> work</u>.
Plant cells have very strong cell walls that allow <u>pressure</u> to build up inside of the cell as water is absorbed. This pressure is called <u>turgor</u>.
When turgor pressure is high enough in a cell, the cell walls become <u>firm</u> and as a result, the cell becomes rigid and the plant is able to stand <u>tall</u> and<u> straight</u>.
When a plant does not get enough water, the turgor pressure inside of the cells <u>decreases.</u> A decrease in <u>pressure</u> pushing against the cell wall causes the cells to lose their <u>shape</u> and <u>shrink</u>. This causes the plant to begin to droop or <u>wilt</u>.
When the wilted plant gets enough water, the cells will become rigid again, and the plant will stand firm and straight once again.
We use Charles's Law: V1/T1=V2/T2
Standard Temperature: 0 degree Celsius= 273K
333.0 degrees Celsius= 606K
Set up: (1.00L)/ (273K)= V2/ (606.0K)
⇒ V2= (1.00L)/ (273K)* (606.0K)= 2.22L
Hope this would help :))
All are true except the statement that ions are formed by changing the number protons in an atom’s nucleus.
A neutral atom contains the same number of protons (positive charge) and electrons (negative charge).
If there are <em>more electrons than protons</em>, the atom becomes a <em>negative ion</em>.
If there are <em>fewer electrons than protons</em>, the atom becomes a <em>positive ion</em>.
The protons are in the nucleus, where we can’t easily get at them. The <em>electrons are outside the nucleus</em>, so other chemicals can easily get at them and either remove them or add to their number.
<em>Metals</em> have only a few valence electrons, so it is fairly easy to remove them and <em>form positive ions</em>.