1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
riadik2000 [5.3K]
3 years ago
12

Can yall pls answer just number 2 for me pls Its due late and im rlly tryna make up my work ill definetly give brainliest just p

ls : (

Mathematics
1 answer:
Natasha_Volkova [10]3 years ago
3 0

Answer:

24y + 16

Step-by-step explanation:

If your searching for number 2 itself, the answer will be 24y + 16, because because you have to multily whats out of the brackets by whats in the brackets. 3y+2 is in the brackets so 8 times whats in the braackets gives u the answer.

You might be interested in
Look at the figure what is the value of y √2y+3=11
Natasha_Volkova [10]

Answer:

y=2

Step-by-step explanation:

first solve those in the brackets then find the square root

2y+3=11

put like terms together

3 goes to the right side

2y=11-3

2=8

y=4

√4=2

y=2

3 0
3 years ago
I really need help plzzzzz​
Marianna [84]

Answer:

  • All similar, see below

Step-by-step explanation:

Q1

<u>Angles</u>

  • 26° & 64° & 90°
  • AA similarity

Q2

<u>Ratios of corresponding sides:</u>

  • 6/8 = 9/12 = 12/16 ⇒ 3/4
  • SSS similarity

Q3

<u>Angle C is vertical</u>

  • ∠ACB ≅ ∠DCE

<u>Ratios of corresponding sides:</u>

  • 9/15 = 18/30 ⇒ 3/5
  • SAS similarity
6 0
2 years ago
Please help me thank you I appreciate it
Volgvan

Answer:

68°

Step-by-step explanation:

PRQ = SRQ gives:

3x-8 = 2x+6

x = 6+8 = 14

So PRQ = SRQ = 34

and

PRS = PRQ+SRQ = 68

4 0
2 years ago
Use this list of Basic Taylor Series and the identity sin2θ= 1 2 (1−cos(2θ)) to find the Taylor Series for f(x) = sin2(3x) based
notsponge [240]

Answer:

The Taylor series for sin^2(3 x) = - \sum_{n=1}^{\infty} \frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}, the first three non-zero terms are 9x^{2} -27x^{4}+\frac{162}{5}x^{6} and the interval of convergence is ( -\infty, \infty )

Step-by-step explanation:

<u>These are the steps to find the Taylor series for the function</u> sin^2(3 x)

  1. Use the trigonometric identity:

sin^{2}(x)=\frac{1}{2}*(1-cos(2x))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(2(3x)))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(6x))

   2. The Taylor series of cos(x)

cos(y) = \sum_{n=0}^{\infty}\frac{-1^{n}y^{2n}}{(2n)!}

Substituting y=6x we have:

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

   3. Find the Taylor series for sin^2(3x)

sin^{2}(3x)=\frac{1}{2}*(1-cos(6x)) (1)

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!} (2)

Substituting (2) in (1) we have:

\frac{1}{2} (1-\sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!})\\ \frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

Bring the factor \frac{1}{2} inside the sum

\frac{6^{2n}}{2}=9^{n}2^{2n-1} \\ (-1^{n})(9^{n})=(-9^{n} )

\frac{1}{2}-\sum_{n=0}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

Extract the term for n=0 from the sum:

\frac{1}{2}-\sum_{n=0}^{0}\frac{-9^{0}2^{2*0-1}x^{2*0}}{(2*0)!}-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \frac{1}{2} -\frac{1}{2} -\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ 0-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ sin^{2}(3x)=-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

<u>To find the first three non-zero terms you need to replace n=3 into the sum</u>

sin^{2}(3x)=\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \sum_{n=1}^{3}\frac{-9^{3}2^{2*3-1}x^{2*3}}{(2*3)!} = 9x^{2} -27x^{4}+\frac{162}{5}x^{6}

<u>To find the interval on which the series converges you need to use the Ratio Test that says</u>

For the power series centered at x=a

P(x)=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+...+ C_{n}(x-a)^{n}+...,

suppose that \lim_{n \to \infty} |\frac{C_{n}}{C_{n+1}}| = R.. Then

  • If R=\infty, the the series converges for all x
  • If 0 then the series converges for all |x-a|
  • If R=0, the the series converges only for x=a

So we need to evaluate this limit:

\lim_{n \to \infty} |\frac{\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}}{\frac{-9^{n+1}2^{2*(n+1)-1}x^{2*(n+1)}}{(2*(2n+1))!}} |

Simplifying we have:

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |

Next we need to evaluate the limit

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |\\ \frac{1}{18x^{2} } \lim_{n \to \infty} |-(n+1)(2n+1)}|}

-(n+1)(2n+1) is negative when n -> ∞. Therefore |-(n+1)(2n+1)}|=2n^{2}+3n+1

You can use this infinity property \lim_{x \to \infty} (ax^{n}+...+bx+c) = \infty when a>0 and n is even. So

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } | \\ \frac{1}{18x^{2}} \lim_{n \to \infty} 2n^{2}+3n+1=\infty

Because this limit is ∞ the radius of converge is ∞ and the interval of converge is ( -\infty, \infty ).

6 0
3 years ago
Level B
Darya [45]
The number has 2 digits - let's call them x and y. The positive difference between the two combinations (lowest-highest and highest-lowest) is always equal to the positive difference of x and y, multiplied by 9.

For example:

76 and 67: 76 - 67 = 9 and ((7-6)*9) = 1*9 = 9
73 and 37: 73 - 37 = 36 and ((7-3)*9) = 4*9 = 36
5 0
3 years ago
Other questions:
  • Find the volume of the figure. help me please
    14·1 answer
  • Pharmacy wants to survey customers to find out which brand of toothpaste
    13·2 answers
  • Which is true of the infinite solutions of the inequality x &lt; 0
    7·1 answer
  • What is the value of 95 - 10 + +2(141 - 7)?​
    7·2 answers
  • 56,426+17,895
    7·2 answers
  • ASAP PLEASE HELP WILL MARK AS BRAINLIST HELP
    15·1 answer
  • The following ordered pairs model a linear function rule.
    5·2 answers
  • A coordinate of a figure is (0,5). What will be the new coordinate after a dilation with a scale factor of 1/32
    11·2 answers
  • Write a recursive formula for the sequence 2,-4,8,- 16,<br> PLEASE HELP ASAP!!!!!!!!
    8·1 answer
  • PLS HELP WILL MARK YOU BRAINLIEST! NO FAKE ANSWERS!!
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!