Answer:
c
Step-by-step explanation:
Using Pascal's triangle, the expansion, although EXTREMELY lengthy, will help you find the 7th term. I am going to type out the expansion only up til the 7th term (although there are actually 10 terms because we are raised to the power of 9). If you would like to learn how to use Pascal's Triangle for binomial expansion, you will need to visit a good website that explains it because it's just too difficult to do it via this website.
The expasion is as follows (up to the 7th term):

That last term is the 7th term. You find out its value by multiplying all the numbers together and adding on the c^3d^6. Again those come from Pascal's triangle, and it's one of the coolest math things ever. I encourage you to take the time to explore how it works.
Answer:
B. (1,5) and (5.25, 3.94)
Step-by-step explanation:
The answer is where the 2 equations intersect.
We need to solve the following system of equations:
y = -x^2 + 6x
4y = 21 - x
From the second equation:
x = 21 - 4y
Plug this into the first equation:
y = -(21 - 4y)^2 + 6(21 - 4y)
y = -(441 - 168y + 16y^2)+ 126 - 24y
y = -441 + 168y - 16y^2 + 126 - 24y
16y^2 + y - 168y + 24y + 441 - 126 = 0
16y^2 - 143y + 315 = 0
y = [-(-143) +/- sqrt ((-143)^2 - 4 * 16 * 315)]/ (2*16)
y = 5, 3.938
When y = 5:
x = 21 - 4(5) = 1
When y = 3.938
x = 21 - 4(3.938) = 5.25.
Answer:
x=10,−10
Step-by-step explanation:
one of those two
Answers:
===================================================
Explanation:
Part (a)
Lines LN and PN have the point N in common. This is the intersection point.
-----------------
Part (b)
To name a plane, pick any three non-collinear points that are inside it. We cannot pick points H, J, K together because infinitely many planes pass through it. Imagine the piece of flat paper able to rotate around this axis (like a propeller). Having the points not all on the same line guarantees we form exactly one unique plane.
I'll pick the non-collinear points P, H and J to get the name Plane PHJ. Other answers are possible.
------------------
Part (c)
Points H, J and K are collinear as they are on the same line. Pick either H or K to fill out the answer box. I'll go with point K
------------------
Part (d)
Point P and line HK are coplanar. They exist in the same flat plane, or on the same sheet of flat paper together.
We can think of that flat plane as the ground level while something like point N is underground somewhere. So point N and anything on that ground plane wouldn't be coplanar.
Note: there are other possible names for line HK such as line JH or line JK. The order doesn't matter when it comes to naming lines.