The sides could be 1,14 or 2,7
Answer:
See below.
Step-by-step explanation:
Party A
y = x^2 + 1
For each value of x in the table, substitute x in the equation with that value and evaluate y.
x = -2: y = (-2)^2 + 1 = 4 + 1 = 5
x = -1: y = (-1)^2 + 1 = 1 + 1 = 2
Do the same for x = 0, x = 1, x = 2
x y
-2 5
-1 2
0 1
1 2
2 5
Part B
Look at points (-2, 5) and (-1, 2). The change in x from (-2, 5) to (-1, 2) is 1. The change in y is -3.
Now let's look at two other points which have a change in x of 1. Look at points (0, 1) and (1, 2). The change in x from (0, 1) to (1, 2) is 1. The change in y is 1.
You can see that for the first two points, a change of 1 in x produces a change of -3 in y, but for the second two points, the same change of 1 in x produce a change of 1 in y. Since the same change of x does not always produce the same change in y, the function is nonlinear.
Answer: A
9514 1404 393
Answer:
(f/g)(x) = 1/(2x)
x ≠ 1/2
Step-by-step explanation:

The domain restriction x ≠ 1/2 comes from the requirement to prevent the denominator factor 6x-3 from being zero.
Answer:
f(4) = 0
Step-by-step explanation:
f(4) means what is the value of y when x = 4
Now x = 4 is on the x- axis, where y = 0, thus
f(4) = 0

if you have already covered slopes, you could also get it that way, in fact is simpler that way.