This is a defective, misleading question, and should never be asked in a Physics class.
There is no such thing as the force due to the impact.
If you know how long it takes the clam to stop once it begins to hit the dirt,
then you can calculate the impulse transferred to it, and tease a force out
of that. But the question doesn't give us the time.
It depends on the material of the surface. Was the clam dropped onto dirt ?
Into a dumpster ? Onto grass ? Concrete ? Styrofoam ? Mud ? The answer
is different in each case, and we still need to know the short length of time
AFTER it first encountered whatever surface brought it to rest.
I would kick this question back to the Physics teacher. It's meaningless,
and the longer you try to work on it, the more nonsense you'll plant into
your head that'll need to be dug out later.
Answer:
Solution
verified
Verified by Toppr
(a) The labelled diagram is shown.
(b) The refractive index of diamond is 2.42. Refractive index of diamond is the ratio of the speed of light in air to the speed of light in diamond.i.e.,
μ=
Speedoflightindiamond
Speedoflightinair
and, the ratio of these velocities is 2.42. i.e., This means that the speed of light in diamond will reduce by a factor of 2.42 as compared to its speed in air. In other words, the speed of light in diamond is
1/2.42
times the speed of light in vacuum.
Explanation:
a) Draw and label the diagram given :
(i) Incident ray
(ii) Refracted ray
(iii) Emergent ray
(iv) Angle of reflection
(v) Angle of deviation
(v) Angle of emergence
(b) The refractive index of diamond is 2.42. What is the meaning of this statement in relation to speed of light?
Answer:
W = 0.842 J
Explanation:
To solve this exercise we can use the relationship between work and kinetic energy
W = ΔK
In this case the kinetic energy at point A is zero since the system is stopped
W = K_f (1)
now let's use conservation of energy
starting point. Highest point A
Em₀ = U = m g h
Final point. Lowest point B
Em_f = K = ½ m v²
energy is conserved
Em₀ = Em_f
mg h = K
to find the height let's use trigonometry
at point A
cos 35 = x / L
x = L cos 35
so at the height is
h = L - L cos 35
h = L (1-cos 35)
we substitute
K = m g L (1 -cos 35)
we substitute in equation 1
W = m g L (1 -cos 35)
let's calculate
W = 0.500 9.8 0.950 (1 - cos 35)
W = 0.842 J
The victim's head is accelerated faster and harder than the
torso when the victom is involved in a typical rear-end collision.
The traffic accident where a vehicle crashes into another
vehicle that is directly in front of it is called a rear-end collision.
One of the most common accident in the United States is the
rear-end collision, and in a lot of cases, rear-end collisions are prompted by
drivers who are inattentive, unfavorable conditions of the road, and poor
following distance.
<span>An enough room in front of your car so you can stop when the
car in front of you stops suddenly is one basic driving rule. The person isn’t
driving safely if he / she is behind you and couldn’t stop.</span>
If they become closer, it is increased, and if the objects become farther away is decreased.