Answer:
t = 0.33h = 1200s
x = 18.33 km
Explanation:
If the origin of coordinates is at the second car, you can write the following equations for both cars:
car 1:
(1)
xo = 10 km
v1 = 55km/h
car 2:
(2)
v2 = 85km/h
For a specific value of time t the positions of both cars are equal, that is, x=x'. You equal equations (1) and (2) and solve for t:


The position in which both cars coincides is:

The magnitude of the resultant force on the balloon is 374.13 N.
The given forces from the image;
- <em>Upward force = 514 N</em>
- <em>Downward force = 267 N</em>
- <em>Eastward force = 678 N</em>
- <em>Westward force = 397 N</em>
The net vertical force on the balloon is calculated as follows;

The net horizontal force on the balloon is calculated as follows;

The magnitude of the resultant force on the balloon is calculated as follows;

Thus, the magnitude of the resultant force on the balloon is 374.13 N.
Learn more here:brainly.com/question/4404327
Answer:
u = - 38.85 m/s^-1
Explanation:
given data:
acceleration = 2.10*10^4 m/s^2
time = 1.85*10^{-3} s
final velocity = 0 m/s
from equation of motion we have following relation
v = u +at
0 = u + 2.10*10^4 *1.85*10^{-3}
0 = u + (21 *1.85)
0 = u + 38.85
u = - 38.85 m/s^-1
negative sign indicate that the ball bounce in opposite directon
The myosin heads pull on the actin, bringing them closer together