Answer: Add an incline or grade to the road track.
Explanation:
Refer to the figure shown below.
When a vehicle travels on a level road in a circular path of radius r, a centrifugal force, F, tends to make the vehicle skid away from the center of the circular path.
The magnitude of the force is
F = mv²/r
where
m = mass of the vehicle
v = linear (tangential) velocity to the circular path.
The force that resists the skidding of the vehicle is provided by tractional frictional force at the tires, of magnitude
μN = μW = μmg
where
μ = dynamic coefficient of friction.
At high speeds, the frictional force will not overcome the centrifugal force, and the vehicle will skid.
When an incline of θ degrees is added to the road track, the frictional force is augmented by the component of the weight of the vehicle along the incline.
Therefore the force that opposes the centrifugal force becomes
μN + Wsinθ = W(sinθ + μ cosθ).
I assume the block plows into the bank of sand with a velocity of 6 m/s and comes to a stop in 2 s.
Answer:
option a.
Explanation:
We can think of an atom as a nucleus (where the protons and neutrons are) and some electrons orbiting it.
We also know that the mass of an electron is a lot smaller than the mass of a proton or the mass of an electron.
So, if all the protons and electrons of an atom are in the nucleus, we know that most of the mass of an atom is in the nucleus of that atom.
Then we define the mass number, which is the total number of protons and neutrons in an atom. Such that the mass of a proton (or a neutron) is almost equal to 1u
Then if we define A as the total number of protons and neutrons, and each one of these weights about 1u
(where u = atomic mass unit)
Then the weight of the nucleus is about A times 1u, or:
A*1u = A atomic mass units.
Then the correct option is:
The mass of the nucleus is approximately EQUAL to the mass number multiplied by __1__ Atomic Mass unit.
option a.
Answer:
theroy of plate tectonics
<span>The basic building block of life is molecules, more specifically macromolecules. There are four different macromolecules which could all be described as the building blocks of life, namely carbohydrates, proteins, nucleic acids and proteins. </span>