Answer:
Yes, the given parallelogram is a rectangle.
Step-by-step explanation:
The vertices of parallelogram are J(-5,0), K(1,4), L(3,1) and M(-3,-3).
The slope formula is
The slopes of opposites sides are same it means they are parallel to each other.
The product of slopes of two consecutive sides is
Since the product of slopes of two consecutive sides is -1, therefore the consecutive sides are perpendicular to each other.
Yes, the given parallelogram is a rectangle.
The volume of a rectangular prism is represented by the following equation:
Where the variables are for volume, width, height, and length, respectively.
We are given that the area of one end is 16 cm² (units have to be correct when solving these problems, so it's 16 cm², not 16 cm as described in the problem). We know that
Using this knowledge, we can change the volume equation to our needs.
Note: We know that A is 16 since it's given
The volume is 208 cm³ (once again, incorrect units given). Insert this into the equation.
Divide both sides of the equation by 16.
The length is 13 cm.
Let me know if you need any clarifications, thanks!
Answer:
7
Step-by-step explanation:
<h2>
<em><u>to</u></em><em><u> </u></em><em><u>smome</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>your</u></em><em><u> </u></em><em><u>body</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>difference</u></em><em><u> </u></em><em><u>between</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>difference</u></em><em><u> </u></em><em><u>between</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>person</u></em><em><u> </u></em><em><u>who</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>good</u></em><em><u> </u></em><em><u>thing</u></em><em><u> </u></em><em><u>to</u></em><em><u> </u></em><em><u>smome</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>few</u></em><em><u> </u></em><em><u>people</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>different</u></em><em><u> </u></em><em><u>type</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>not</u></em><em><u> </u></em><em><u>sure</u></em><em><u> </u></em><em><u>how</u></em><em><u> </u></em><em><u>to</u></em><em><u> </u></em><em><u>make</u></em><em><u> </u></em><em><u>them</u></em><em><u> </u></em><em><u>better</u></em><em><u> </u></em><em><u>or</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>person</u></em><em><u> </u></em><em><u>with</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>better</u></em><em><u> </u></em><em><u>sense</u></em><em><u> </u></em><em><u>than</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>other</u></em><em><u> </u></em><em><u>person</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>different</u></em><em><u> </u></em><em><u>type</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>good</u></em><em><u> </u></em><em><u>relationship</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>difference</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>difference</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>difference</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>difference</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>that</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>to</u></em><em><u> </u></em><em><u>smome</u></em><em><u> </u></em></h2>
In order to answer this, we will first need to combine like terms on each side. on the left, you can leave them alone. however on the right, we will need to combine 2 and 11. this is 13. the right side becomes 13-16y. after that, we can add 20y to both sides. that equals 15=13+4y now we can subtract 13 from both sides. 2=4y. then we divide by 4 on both sides to find y. y=.5
The answer is c trust me it is c trust me the answer is c just trust me it is c