Answer:

Step-by-step explanation:
Given

Required
Determine a homogeneous linear differential equation
Rewrite the expression as:

Where
and 
For a homogeneous linear differential equation, the repeated value m is given as:

Substitute values for
and 


Add 1 to both sides


Square both sides



In complex numbers:

So, the expression becomes:

Add 1 to both sides


This corresponds to the homogeneous linear differential equation

$9 is discounted from the regular price. If you find the discounted price you get $21. Then subtract the 21 from 30 and you get 9
A) I would make the positive integer x and then form an equation.
x + 30 = x^2 - 12
x + 42 = x^2
0 = x^2 - x - 42 this can be factorised
(x - 7) ( x + 6) Therefore x = 7 or x = -6
Since the question asks for a positive integer the answer is 7.
B) two positive numbers x and y.
X - y = 3
x^2 + y^2 = 117
Use these simultaneous equations to figure out each number.
Rearrange the first equation
x = y + 3
Then substitute it into the second equation.
(y+3)^2 + y^2 = 117
y^2 + 6y + 9 + y^2 = 117
2y^2 + 6y - 108 = 0
then factorise this.
(2y - 12) (y + 9)
This means that y = 6 or y = -9 but it’s 6 because that’s the only positive number.
Use y to find x
x = y + 3
x = 6 + 3
x = 9
So the answers are x = 9 and y = 6.
8 divided by 2 is 4, so multiply 3/4 by 2, 6/8, than you have your answer, 6.
Answer:
x *2 + (28-x)*4 = 100
Step-by-step explanation:
Given
Total number of questions in the paper = 28
Out of these 28 questions let us say that x number of questions are of 2 points and 28-x questions are of 4 points.
Also, the complete test is of 100 marks
Thus, the linear equation representing the
x *2 + (28-x)*4 = 100