Answer:
57
Explanation:
57 it's a good thing I didn't get a chance
For a first order reaction, the half life is inversely proportional to the rate constant.
The formula is
half life = ln(2)/k = 0.693/k
where k is the rate constant
t = 5.50 minutes
k = ln(2)/5.50 = 0.126 min^-1
Your rate constant is 0.126 min^-1.
1 L ------- 1000 cm³
1.45 L ----- ???
1.45 * 1000 = 1450 cm³ ( volume )
Density = 0.710 g/cm³
mass = in Kg
m = D * V
m = 0.710 * 1450
m = 1029.5 g
1 Kg ------- 1000 g
kg -------- 1029.5 g
mass = 1029.5 / 1000
mass = 1.0295 Kg
hope this helps!
1 Cal ---------- 4.184 J
? Cal ---------- 130.0 J
130.0 x 1 / 4.184 => 31.07 Cal
hope this helps!
In buffer solution there is an equilibrium between the acid HA and its conjugate base A⁻: HA(aq) ⇌ H⁺(aq) + A⁻(aq).
When acid (H⁺ ions) is added to the buffer solution, the equilibrium is shifted to the left, because conjugate base (A⁻) reacts with hydrogen cations from added acid, according to Le Chatelier's principle: H⁺(aq) + A⁻(aq) ⇄ HA(aq). So, the conjugate base (A⁻) consumes some hydrogen cations and pH is not decreasing (less H⁺ ions, higher pH of solution).
A buffer can be defined as a substance that prevents the pH of a solution from changing by either releasing or absorbing H⁺ in a solution.
Buffer is a solution that can resist pH change upon the addition of an acidic or basic components and it is able to neutralize small amounts of added acid or base, pH of the solution is relatively stable