Hello!
Your answer would be polar covalent.
Covalent bonds are where two atoms come together, and share electrons between each other, and are therefore, bonded.
In some cases of molecules that are bonded with a covalent bond, one of the atoms is more, you could call it selfish, and takes more of the electrons. A prime example of this is H20, or water. One of the atoms takes the electrons for longer, and therefore has a more negative charge because electrons are counted as negative charges.
This bond where an atom "hogs" electrons, is called a polar covalent bond, respective to the changing charges for the atoms.
So your answer is d.
Hope this helped!
Answer:
A variable shape that adapts to fit its container.
THE KINETIC MOLECULAR THEORY STATES THAT ALL PARTICLES OF AN IDEAL GAS ARE IN CONSTANT MOTION AND EXHIBITS PERFECT ELASTIC COLLISIONS.
Explanation:
An ideal gas is an imaginary gas whose behavior perfectly fits all the assumptions of the kinetic-molecular theory. In reality, gases are not ideal, but are very close to being so under most everyday conditions.
The kinetic-molecular theory as it applies to gases has five basic assumptions.
- Gases consist of very large numbers of tiny spherical particles that are far apart from one another compared to their size.
- Gas particles are in constant rapid motion in random directions.
- Collisions between gas particles and between particles and the container walls are elastic collisions.
- The average kinetic energy of gas particles is dependent upon the temperature of the gas.
- There are no forces of attraction or repulsion between gas particles.
This question provides us –
- Weight of
is = 47 g - Volume, V = 375 mL
__________________________________________
- Molar Mass of
–


<u>Using formula</u> –






- Henceforth, Molarity of the solution is = 1.7M
___________________________________________
False weight is dependent on the force of gravity