Explanation:
A sequence is a list of numbers.
A <em>geometric</em> sequence is a list of numbers such that the ratio of each number to the one before it is the same. The common ratio can be any non-zero value.
<u>Examples</u>
- 1, 2, 4, 8, ... common ratio is 2
- 27, 9, 3, 1, ... common ratio is 1/3
- 6, -24, 96, -384, ... common ratio is -4
___
<u>General Term</u>
Terms of a sequence are numbered starting with 1. We sometimes use the symbol a(n) or an to refer to the n-th term. The general term of a geometric sequence, a(n), can be described by the formula ...
a(n) = a(1)×r^(n-1) . . . . . n-th term of a geometric sequence
where a(1) is the first term, and r is the common ratio. The above example sequences have the formulas ...
- a(n) = 2^(n -1)
- a(n) = 27×(1/3)^(n -1)
- a(n) = 6×(-4)^(n -1)
You can see that these formulas are exponential in nature.
__
<u>Sum of Terms</u>
Another useful formula for geometric sequences is the formula for the sum of n terms.
S(n) = a(1)×(r^n -1)/(r -1) . . . . . sum of n terms of a geometric sequence
When |r| < 1, the sum converges as n approaches infinity. The infinite sum is ...
S = a(1)/(1-r)
Answer:
BC = 19.78
Step-by-step explanation:
using sin(x) rule
sin(54)= 16/BC
sin(54)=0.80
∴0.80=16/BC (divied both side by 0.80)
BC=16/0.80 =19.78
Answer:
5+4+7
Step-by-step explanation:
I think
Answer:
On the surface, it seems easy. Can you think of the integers for x, y, and z so that x³+y³+z³=8? Sure. One answer is x = 1, y = -1, and z = 2. But what about the integers for x, y, and z so that x³+y³+z³=42?
That turned out to be much harder—as in, no one was able to solve for those integers for 65 years until a supercomputer finally came up with the solution to 42. (For the record: x = -80538738812075974, y = 80435758145817515, and z = 12602123297335631. Obviously.)
Step-by-step explanation:
Answer:
Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true
Step-by-step explanation: