1: I can’t see one it’s cut out sorry :(
2:go down four horrizontal for each line making a rhombus
3: 3a:true 3b:true 3c:false 3D: false
4.PART A: Draw a square in the middle.
4. PART B: Say there are four right angles
5: Line, point, ray, line segment
6. There are 2 acute and 1 right
7. A B C
8: 1/4 1/6 1/8
9: 9a 9c and 9d
10: square and polygons first, then triangles because they have 4 sides while a triangle has 3
10 PART B: rectangles second, then the pentagons are third, the parallelogram is first, then the triangles because a rectangle has all right angles
11: she drew a square!
12: polygons without right angles
13: I can’t draw on your paper just draw three lines in the trapezoid
13: a c and d
For this case we have the following table:
x f(x)
<span><span><span>0 2
</span><span>1 5
</span><span>2 10
</span><span>3 17
</span></span></span> The equation that best fits the data in the table, for this case, is given by a quadratic function.
<span><span><span> </span></span></span>The quadratic function in its standard form is:
f (x) = x2 + 2x + 2
Answer:
f (x) = x2 + 2x + 2
Answer choice should be b!
Answer:
35
Step-by-step explanation:
base × height so just multiple 7 and 5
![\bf -7x-2y=4\implies -2y=7x+4\implies y=\cfrac{7x+4}{-2}\implies y=\cfrac{7x}{-2}+\cfrac{4}{-2} \\\\\\ y=\stackrel{\stackrel{m}{\downarrow }}{-\cfrac{7}{2}} x-2\qquad \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20-7x-2y%3D4%5Cimplies%20-2y%3D7x%2B4%5Cimplies%20y%3D%5Ccfrac%7B7x%2B4%7D%7B-2%7D%5Cimplies%20y%3D%5Ccfrac%7B7x%7D%7B-2%7D%2B%5Ccfrac%7B4%7D%7B-2%7D%20%5C%5C%5C%5C%5C%5C%20y%3D%5Cstackrel%7B%5Cstackrel%7Bm%7D%7B%5Cdownarrow%20%7D%7D%7B-%5Ccfrac%7B7%7D%7B2%7D%7D%20x-2%5Cqquad%20%5Cimpliedby%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20slope-intercept~form%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y%3D%5Cunderset%7By-intercept%7D%7B%5Cstackrel%7Bslope%5Cqquad%20%7D%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bm%7Dx%2B%5Cunderset%7B%5Cuparrow%20%7D%7Bb%7D%7D%7D%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

now, what's the slope of a line parallel to that one above? well, parallel lines have exactly the same slope.