There are 3 Barium, 2 Phosphorus and 8 Oxygen in Barium Phosphate (Ba3(PO4)2, making 13 units. Multiply 0.0350 mol given by 13 and then you get 0.455 mol. Since they want atoms, multiply 0.455 by Avogadro's number (0.455 x 6.023 x 1023) and you get 2.74 atoms of barium phosphate.
Answer:
The temperature is 419,1 K
Explanation:
We use the formula PV=nRT T=PV/nR
T=1,5 atm x 12,6 L/0,55 mol x 0,082 l atm/K mol
T= 419,0687361 K
Answer:
(a) ΔU = 7.2x10²
(b) W = -5.1x10²
(c) q = 5.2x10²
Explanation:
From the definition of power (p), we have:
(1)
<em>where, p: is power (J/s = W (watt)) W: is work = ΔU (J) and t: is time (s) </em>
(a) We can calculate the energy (ΔU) using equation (1):
(b) The work is related to pressure and volume by:

<em>where p: pressure and ΔV: change in volume = V final - V initial </em>
(c) By the definition of Energy, we can calculate q:
<em>where Δq: is the heat transfer </em>
I hope it helps you!
Answer:
Four substitution products are obtained. The carbocation that forms can react with either nucleophile (H2O or CH3OH) from either the top or bottom side of the molecule
Explanation:
An SN1 reaction usually involves the formation of a carbocation in the slow rate determining step. This carbocation is now attacked by a nucleophile in a subsequent fast step to give the desired product.
However, the product is obtained as a racemic mixture because the nucleophile may attack from the top or bottom of the carbocation hence both attacks are equally probable.
The attacking nucleophile in this case may be water or CH3OH